Skip to main content

Influence of the Current Field Non-stationarity and the Non-simultaneity of Hydrographic Measurements on ADCP-based Transport Estimates

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Non-stationarity of the current’s field in combination with non-simultaneous measurements at stations of a hydrographic section leads to distortions in the ADCP-based assessments of total geostrophic barotropic transport over the section. These distortions over 49 particular sections from-shore-to-shore in different regions of the World Ocean are investigated on the basis of satellite altimetry data of Sea Level Anomaly, Absolute Dynamic Topography (ADT), and Formal Mapping Error (FME) available in the Internet (http://www.aviso.altimetry.fr). Distortions of barotropic transport have two components. The first is due to a change in the field of currents during measurements from station to station. It can be taken into account in the structure of the transport across the section from satellite altimetry data. The second is related to the displacement of streamlines of the geostrophic current at the ocean surface (ADT isolines) relative to the isobaths and represents the variability range of the instantaneous barotropic transport across the section track estimated on the basis of the same data during the time interval of measurements over this section. Assessments of these distortions are compared with the estimates of the errors of the barotropic transport over particular hydrographic sections. It is shown that the main component of these errors is the FME. Often, both components of the barotropic transport distortion are greater than the barotropic transport error, even for “rapid” sections, which are occupied in 6–12 days. Examples exist, in which significant transport distortions are accumulated during even shorter time periods of 3–5 days. Thus, investigation of the non-stationarity of the velocity field in combination with the non-simultaneity of hydrographic measurements is absolutely necessary for the analyses of the total transport and its structure across a hydrographic section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arhan, M., Naveira Garabato, A. C., Heywood, K. J., & Stevens, D. P. (2002). The Antarctic Circumpolar Current between the Falkland Islands and South Georgia. Journal of Physical Oceanography, 32(6), 1914–1931.

    Article  Google Scholar 

  2. Cunningham, S. A., Alderson, S. G., King, B. A., & Brandon, M. A. (2003). Transport and variability of the Antarctic Circumpolar Current in Drake Passage. Journal of Geophysical Research, 108(C5), 8084. https://doi.org/10.1029/2001JC001147.

    Article  Google Scholar 

  3. Donohue, K. A., Tracey, K. L., Watts, D. R., Chidichimo, M. P., & Chereskin, T. K. (2016). Mean Antarctic Circumpolar Current transport measured in Drake Passage. Geophysical Research Letters, 43, 11760–11767. https://doi.org/10.1002/2016GL070319.

    Article  Google Scholar 

  4. Dye, S., Hansen, B., Østerhus, S., Quadfasel, D., & Rudels, B. (2007). The overflow of dense water across the Greenland-Scotland Ridge. Exchanges, 40, 20–22.

    Google Scholar 

  5. Gladyshev, S., Arhan, M., Sokov, A., & Speich, S. (2008). A hydrographic section from South Africa to the southern limit of the Antarctic Circumpolar Current at the Greenwich meridian. Deep-Sea Research Part I, 55(10), 1284–1303.

    Article  Google Scholar 

  6. Gladyshev, S. V., Koshlyakov, M. N., & Tarakanov, R. Y. (2008). Currents in the Drake Passage based on observations in 2007. Oceanology, 48(6), 759–770.

    Article  Google Scholar 

  7. Imawaki, S., Uchida, H., Ichikawa, H., Fukasawa, M., Umatani, S., & ASUKA Group. (2001). Satellite altimeter monitoring the Kuroshio Transport South of Japan. Geophysical Research Letters, 28, 17–20.

    Article  Google Scholar 

  8. Koenig, Z., Provost, C., Park, Y. H., Ferrari, R., & Sennéchael, N. (2016). Anatomy of the Antarctic Circumpolar Current volume transports through Drake Passage. Journal of Geophysical Research: Oceans, 121, 2572–2595. https://doi.org/10.1002/2015JC011436.

    Google Scholar 

  9. Koshlyakov, M. N., Lisina, I. I., Morozov, E. G., & Tarakanov, R. Y. (2007). Absolute Geostrophic Currents in the Drake Passage Based on observations in 2003 and 2005. Oceanology, 47(4), 451–463.

    Article  Google Scholar 

  10. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Ryzhikov, N. I. (2010). Deep Currents in the Central Part of the Drake Passage based on the data of the 2008 hydrographic survey. Oceanology, 50(6), 821–828.

    Article  Google Scholar 

  11. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2011). Currents in the Western Drake Passage according to the observations in January of 2010. Oceanology, 51(2), 187–198.

    Article  Google Scholar 

  12. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2012). Currents in the Drake Passage based on the observations in November of 2010. Oceanology, 52(3), 299–308.

    Article  Google Scholar 

  13. Koshlyakov, M. N., Gladyshev, S. V., Tarakanov, R. Y., & Fedorov, D. A. (2013). Currents in the Drake Passage by the observations in October–November of 2011. Oceanology, 53(1), 1–12.

    Article  Google Scholar 

  14. Qiu, B., & Joyce, T. M. (1992). Interannual variability in the mid- and low latitude western North Pacific. Journal of Physical Oceanography, 22, 1062–1079.

    Article  Google Scholar 

  15. Rio, M. H., Mulet, S., & Picot. N. (2013). New global mean dynamic topography from a GOCE geoid model, altimeter measurements and oceanographic in-situ data. In Proceedings of the ESA Living Planet Symposium, Edinburg, September 2013.

    Google Scholar 

  16. Roach, A. T., Aagaard, K., Pease, C. H., Salo, S. A., Weingartner, T., Pavlov, V., et al. (1995). Direct measurements of transport and water properties through the Bering Strait. Journal of Geophysical Research, 100(C9), 18443–18457.

    Article  Google Scholar 

  17. Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962.

    Google Scholar 

  18. Talley, L. D., Reid, J. L., & Robbins, P. E. (2003). Data-based meridional Overturning stream functions for the global ocean. Journal of Climate, 16(10), 3213–3226.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, grant 16-17-10149. The author is grateful to E. G. Morozov, and K. V. Lebedev for useful comments when preparing the text of this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Yu. Tarakanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tarakanov, R.Y. (2018). Influence of the Current Field Non-stationarity and the Non-simultaneity of Hydrographic Measurements on ADCP-based Transport Estimates. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_23

Download citation

Publish with us

Policies and ethics