The Global Atmosphere Oscillations in the Context of the Recent Climate Change

  • Victor G. Neiman
  • Vladimir I. Byshev
  • Yury A. Romanov
  • Ilya V. Serykh
Part of the Springer Oceanography book series (SPRINGEROCEAN)


This study is dedicated to the confirmation, improvement, and extending of the preliminary hypothesis on short-term oscillations of the recent climate thermodynamic characteristics. In some previous studies we distinguished the quasi-cyclic oscillations in the recent climate dynamics with periods of 3–4 years and 25–35 years. These fluctuations appear in the most explicit form in the terms of large-scale redistribution of the atmospheric air mass accompanied by a significant enhancement of the positive atmospheric pressure anomaly in the equatorial-tropical zone and formation of the other major anomalies in different regions of the Earth. The results indicate that the known multimode regional indices in the dynamics of the climate system: the North Atlantic, North Pacific, Southern, and the others so-called Oscillations (NAO, NPO etc.) can be derived from the global atmospheric oscillations (GAO) with the temporal scales from several years to decades. It was found that multi-decade GAO is distinguished on the basis of a consequent phase change of the climate scenario in the North Atlantic region. Consideration of the interannual GAO led us to the definition of a new concept of the El Niño’s physical trigger mechanism in the Pacific region. Moreover, on the basis of the empirical data, it was shown for the first time that the well-known climatic events within the El Niño—Southern Oscillation (ENSO) phenomenon should be considered as a structural part of the interannual GAO.



This work was supported by the Russian Science Foundation, grant 14-50-00095.


  1. 1.
    Gribbin, D. (1980). Climate change (p. 360). Leningrad: Gidrometeoizdat.Google Scholar
  2. 2.
    Huybers, P., & Curry, W. (2006). Links between annual, Milankovitch, and continuum temperature variability. Nature, 441, 329–332.CrossRefGoogle Scholar
  3. 3.
    Kondrat’ev, K. J. (1992). Global climate (p. 359). Saint-Petersburg: Nauka.Google Scholar
  4. 4.
    Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (Eds.). (2013). Climate change 2013; IPCC, The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge: Cambridge University Press.Google Scholar
  5. 5.
    Bronnimann, S., Stickler, A., Griesser, T., Fisher, A. M., Grant, A., Ewen, T., et al. (2009). Variability of large-scale atmospheric circulation indices for the Northern Hemisphere during the past 100 years. Meteorologische Zeitschrift, 18(4), 379–396.CrossRefGoogle Scholar
  6. 6.
    Allan, R. J., & Ansell, T. J. (2006). A new globally-complete monthly historical gridded mean sea level pressure data set (HadSLP2): 1850–2004. Journal of Climate, 19, 5816–5846.CrossRefGoogle Scholar
  7. 7.
    Jones, P. D., Lister, D. H., Osborn, T. J., Harpham, C., Salmon, M., & Morice, C. P. (2012). Hemispheric and large-scale land surface air temperature variations: An extensive revision and an update to 2010. Journal of Geophysical Research, 117, D05127. Scholar
  8. 8.
    Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2012). On El Niño as a consequence of the global oscillation in the dynamics of the Earth’s climatic system. Doklady Earth Sciences, 446(1), 1089–1094.CrossRefGoogle Scholar
  9. 9.
    Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., et al. (1998). ENSO theory. Journal of Geophysical Research, 103(C7), 14261–14290.CrossRefGoogle Scholar
  10. 10.
    Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2009). On the spatial nonuniformity of some parameters of the modern climate. Doklady Earth Sciences, 426(1), 705–709.CrossRefGoogle Scholar
  11. 11.
    Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2011). Phase variability of some characteristics of the present-day climate in the northern Atlantic region. Doklady Earth Sciences, 438(2), 887–892.CrossRefGoogle Scholar
  12. 12.
    Kozlenko, S. S., Mokhov, I. I., & Smirnov, D. A. (2009). Analysis of the cause and effect relationships between El Niño in the Pacific and its analog in the equatorial Atlantic. Izvestiya, Atmospheric and Oceanic Physics, 45(6), 704–713.CrossRefGoogle Scholar
  13. 13.
    Steinman, B. A., Mann, M. E., & Miller, S. K. (2015). Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 347(6225), 988–991.CrossRefGoogle Scholar
  14. 14.
    Wyatt, M. G., Kravtsov, S., & Tsonis, A. A. (2012). Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Climate Dynamics, 38, 929–949. Scholar
  15. 15.
    Zhang, L., Wang, C., & Wu, L. (2012). Low-frequency modulation of the Atlantic warm pool by the Atlantic multidecadal oscillation. Climate Dynamics, 39, 1661–1671. Scholar
  16. 16.
    Byshev, V. I., Neiman, V. G., Romanov, Y. A., & Serykh, I. V. (2011). On global scale of El Niño events within the Earth climatic system. Recent problems of the Earth observation from space. 8(4), 200–208 (in Russian).Google Scholar
  17. 17.
    Anisimov, M. V., Byshev, V. I., Zalesny, V. B., Moshonkin, S. N., Neiman, V. G., Romanov, Y. A., et al. (2012). On inter-decadal variability of ocean and atmosphere characteristics in the Northern Atlantic. Recent problems of the Earth observation from space. 9(2), 304–311 (in Russian).Google Scholar
  18. 18.
    Petrosjants, M. A., Semenov, E. K., & Gushchina, D. J. (2005). Atmospheric circulation in tropics: Climate and its variability (p. 640). Moscow: Maks Press.Google Scholar
  19. 19.
    Kao, H.-Y., & Yu, J.-Y. (2009). Contrasting Eastern-Pacific and Central-Pacific types of ENSO. Journal of Climate, 22, 615–632. Scholar
  20. 20.
    Sidorenkov, N. S. (2002). Physics of the Earth’s rotation instabilities (p. 384). Moscow: Nauka, Fizmatlit.Google Scholar
  21. 21.
    Liu, Z., & Alexander, M. (2007). Atmospheric bridge, oceanic tunnel, and global climate teleconnections. Reviews of Geophysics, 45, R62005.CrossRefGoogle Scholar
  22. 22.
    Bronnimann, S. (2007). Impact of El Niño-Southern Oscillation on European climate. Reviews of Geophysics, 45, RG3003.
  23. 23.
    Li, S., & Luo, F.-F. (2013). Lead-lag connection of the Atlantic multidecadal oscillation (AMO) with East Asian surface air temperatures instrumental records. Atmospheric and Oceanic Science Letters, 6(3), 138–143.CrossRefGoogle Scholar
  24. 24.
    Varotsos, C. A. (2013). The global signature of the ENSO and SST-like fields. Theoretical and Applied Climatology, 113, 197–204. Scholar
  25. 25.
    Liu, P., & Sui, C.-H. (2014). An observational analysis of the oceanic and atmospheric structure of global-scale multi-decadal variability. Advances in Atmospheric Science, 31, 316–330.CrossRefGoogle Scholar
  26. 26.
    Serykh, I. V., & Sonechkin, D. M. (2016). On the influence of the polar tide on El Niño. Recent problems of the Earth observation from Space. 13(2), 44–52 (in Russian).Google Scholar
  27. 27.
    Byshev, V. I., Neiman, V. G., Romanov, Y. A., Serykh, I. V., & Sonechkin, D. M. (2016). Statistical significance and climatic role of the global atmospheric oscillation. Oceanology, 56(2), 165–171.CrossRefGoogle Scholar
  28. 28.
    de Viron, O., Dickey, J. O., & Ghil, M. (2013). Global modes of climate variability. Geophysical Research Letters, 40, 1832–1837. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Victor G. Neiman
    • 1
  • Vladimir I. Byshev
    • 1
  • Yury A. Romanov
    • 1
  • Ilya V. Serykh
    • 1
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations