Skip to main content

Rogue Waves in the Ocean, the Role of Modulational Instability, and Abrupt Changes of Environmental Conditions that Can Provoke Non Equilibrium Wave Dynamics

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Modulational instability is an efficient mechanism for the generation of rogue waves in the limit of narrow-banded and long-crested wave fields. While such wave fields are easily achieved in laboratories, there appears to be lacking evidence that known occurrences of rogue waves in the ocean (e.g. Draupner “New Year” wave, Andrea wave) or ship accidents that could have been provoked by rogue waves (e.g. the Prestige accident) actually happened in sea states favorable for the modulational instability to have played an important role. The absence of modulational instability does not mean that nonlinear interactions are unimportant. Here we point out recent results that suggest large deviations from Gaussian statistics can happen due to nonlinearity in the absence of modulational instability, the key ingredient seems to be that the wave field is brought into a state of non-equilibrium.

Dedicated to Eugene G. Morozov on his 70th Birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, I. E. (1978). The effects of randomness on the stability of two-dimensional surface wavetrains. Proceedings of the Royal Society of London A, 363, 525–546.

    Article  Google Scholar 

  2. Alber, I. E, Saffman, P. (1978). Stability of random nonlinear deep water waves with finite bandwidth spectra. Technical Report, 31326–6035–RU–TRW Defense and Space System Group

    Google Scholar 

  3. Benjamin, T. B. (1967). Instability of periodic wavetrains in nonlinear dispersive systems. Proceedings of the Royal Society of London A, 299, 59–75.

    Article  Google Scholar 

  4. Benjamin, T. B., & Feir, J. E. (1967). The disintegration of wave trains on deep water. Journal of Fluid Mechanics, 27, 417–430.

    Article  Google Scholar 

  5. Benney, D. J., & Roskes, G. J. (1969). Wave instabilities. Studies in Applied Mathematics, 48, 377–385.

    Article  Google Scholar 

  6. Bitner-Gregersen, E. M, Gramstad, O. (2016). Rogue waves—Impact on ships and offshore structures. Technical Report, 05–2015, DNV-GL

    Google Scholar 

  7. Bitner-Gregersen, E. M., Fernandez, L., Lefèvre, J. M., Monbaliu, J., & Toffoli, A. (2014). The North Sea Andrea storm and numerical simulations. Natural Hazards and Earth System Science, 14, 1407–1415.

    Article  Google Scholar 

  8. Cavaleri, L., Barbariol, F., Benetazzo, A., Bertotti, L., Bidlot, J. R., Janssen, P., et al. (2016). The Draupner wave: A fresh look and the emerging view. Journal of Geophysical Research: Oceans, 121, 6061–6075.

    Google Scholar 

  9. Chabchoub, A., Hoffmann, N. P., & Akhmediev, N. (2011). Rogue wave observation in a water wave tank. Physical Review Letters, 106, 204,502.

    Article  Google Scholar 

  10. Chabchoub, A., Akhmediev, N., & Hoffmann, N. P. (2012). Experimental study of spatiotemporally localized surface gravity water waves. Physical Review Letters, 86, 016,311.

    Google Scholar 

  11. Chabchoub, A., Kibler, B., Dudley, J. M., & Akhmediev, N. (2014). Hydrodynamics of periodic breathers. Philosophical Transactions of the Royal Society of London A, 372, 20140,005.

    Article  Google Scholar 

  12. Crawford, D. R., Saffman, P. G., & Yuen, H. C. (1980). Evolution of a random inhomogeneous field of nonlinear deep-water gravity waves. Wave Motion, 2, 1–16.

    Article  Google Scholar 

  13. Davey, A. (1972). The propagation of a weak nonlinear wave. Journal of Fluid Mechanics, 53, 769–781.

    Article  Google Scholar 

  14. Dommermuth, D. (2000). The initialization of nonlinear waves using an adjustment scheme. Wave Motion, 32, 307–317.

    Article  Google Scholar 

  15. Donelan, M. A., & Magnusson, A. K. (2017). The making of the Andrea wave and other rogues. Scientific Reports, 7, 44,124.

    Article  Google Scholar 

  16. Draper, L. (1964). ‘Freak’ ocean waves. Oceanus, 10, 13–15.

    Google Scholar 

  17. Dysthe, K., Krogstad, H. E., & Müller, P. (2008). Oceanic rogue waves. Annual Review of Fluid Mechanics, 40, 287–310.

    Article  Google Scholar 

  18. Dysthe, K. B. (1979). Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Proceedings of the Royal Society of London A, 369, 105–114.

    Article  Google Scholar 

  19. Dysthe, K. B., & Trulsen, K. (1999). Note on breather type solutions of the NLS as models for freak-waves. Physica Scripta, T82, 48–52.

    Article  Google Scholar 

  20. Fedele, F., Brennan, J., Ponce de León, S., Dudley, J., & Dias, F. (2016). Real world ocean rogue waves explained without the modulational instability. Scientific Reports, 6, 27,715.

    Article  Google Scholar 

  21. Gramstad, O., & Trulsen, K. (2007). Influence of crest and group length on the occurrence of freak waves. Journal of Fluid Mechanics, 582, 463–472.

    Article  Google Scholar 

  22. Gramstad, O., Zeng, H., Trulsen, K., & Pedersen, G. K. (2013). Freak waves in weakly nonlinear unidirectional wave trains over a sloping bottom in shallow water. Physics of Fluid, 25, 122103.

    Article  Google Scholar 

  23. Hasimoto, H., & Ono, H. (1972). Nonlinear modulation of gravity waves. Journal of the Physical Society of Japan, 33, 805–811.

    Article  Google Scholar 

  24. Haver, S. (2000). Evidences of the existence of freak waves. In: 2000 Rogue Waves (pp. 129–140). Ifremer.

    Google Scholar 

  25. Haver, S. (2004). A possible freak wave event measured at the Draupner jacket Januar 1 1995. Rogue Waves, 2004, 1–8.

    Google Scholar 

  26. Janssen, P. A. E. M. (2003). Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 33, 863–884.

    Article  Google Scholar 

  27. Kharif, C., Pelinovsky, E., Slunyaev, A. (2009). Rogue waves in the ocean. Springer

    Google Scholar 

  28. Kuznetsov, E. A. (1977). Solitons in a parametrically unstable plasma. Soviet physics, Doklady, 22, 507–508.

    Google Scholar 

  29. Longuet-Higgins, M. S. (1963). The effect of non-linearities on statistical distributions in the theory of sea waves. Journal of Fluid Mechanics, 17, 459–480.

    Article  Google Scholar 

  30. Ma, Y. C. (1979). The perturbed plane-wave solutions of the cubic Schrödinger equation. Studies in Applied Mathematics, 60, 43–58.

    Article  Google Scholar 

  31. Magnusson, A. K., & Donelan, M. A. (2013). The Andrea wave characteristics of a measured North Sea rogue wave. Journal of Offshore Mechanics and Arctic Engineering, 135, 031,108.

    Article  Google Scholar 

  32. Mallory, J. K. (1974). Abnormal waves on the south east coast of South Africa. The International Hydrographic Review, 51, 99–129.

    Google Scholar 

  33. Masuda, A., Kuo, Y. Y., & Mitsuyasu, H. (1979). On the dispersion relation of random gravity waves. Part 1. Theoretical framework. Journal of Fluid Mechanics, 92, 717–730.

    Article  Google Scholar 

  34. Molin, B., Remy, F., Kimmoun, O., & Jamois, E. (2005). The role of tertiary wave interactions in wave-body problems. Journal of Fluid Mechanics, 528, 323–354.

    Article  Google Scholar 

  35. Molin, B., Kimmoun, O., Remy, F., & Chatjigeorgiou, I. K. (2014). Third-order effects in wave-body interaction. European Journal of Mechanics-B/Fluids, 47, 132–144.

    Article  Google Scholar 

  36. Onorato, M., & Suret, P. (2016). Twenty years of progresses in oceanic rogue waves: the role played by weakly nonlinear models. Natural Hazards, 84, 541–548.

    Article  Google Scholar 

  37. Onorato, M., Osborne, A. R., Serio, M., & Bertone, S. (2001). Freak waves in random oceanic sea states. Physical Review Letters, 86, 5831–5834.

    Article  Google Scholar 

  38. Onorato, M., Osborne, A. R., & Serio, M. (2002a). Extreme wave events in directional, random oceanic sea states. Physics of Fluids, 14, L25–L28.

    Article  Google Scholar 

  39. Onorato, M., Osborne, A. R., Serio, M., Resio, D., Pushkarev, A., Zakharov, V. E., et al. (2002b). Freely decaying weak turbulence for sea surface gravity waves. Physical Review Letters, 89(14), 144,501.

    Article  Google Scholar 

  40. Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2004). Observation of strongly non-Gaussian statistics for random sea surface gravity waves in wave flume experiments. Physical Review Letters, 70, 1–4.

    Google Scholar 

  41. Onorato, M., Osborne, A. R., Serio, M., Cavaleri, L., Brandini, C., & Stansberg, C. T. (2006). Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves. European Journal of Mechanics - B/Fluids, 25, 586–601.

    Article  Google Scholar 

  42. Onorato, M., Cavaleri, L., Fouques, S., Gramstad, O., Janssen, P. A. E. M., Monbaliu, J., et al. (2009a). a) Statistical properties of mechanically generated surface gravity waves: A laboratory experiment in a three dimensional wave basin. Journal of Fluid Mechanics, 627, 235–257.

    Article  Google Scholar 

  43. Onorato, M., Waseda, T., Toffoli, A., Cavaleri, L., Gramstad, O., Janssen, P. A. E. M., et al. (2009b). (b) Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events. Physical Review Letters, 102, 114,502.

    Article  Google Scholar 

  44. Osborne, A. R., Onorato, M., & Serio, M. (2000). The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains. Physics Letters A, 275, 386–393.

    Article  Google Scholar 

  45. Peregrine, D. H. (1983). Water-waves, non-linear Schrödinger-equations and their solutions. Journal of the Australian Mathematical Society B, 25, 16–43.

    Article  Google Scholar 

  46. Pierson, W. J. (1955). Wind generated gravity waves. Advances in Geophysics, 2, 93–178.

    Article  Google Scholar 

  47. Raustøl, A. (2014). Freake bølger over variabelt dyp. Master’s thesis, University of Oslo

    Google Scholar 

  48. Sand, S. E., Ottesen Hansen, N. E., Klinting, P., Gudmestad, O. T., & Sterndorff, M. J. (1990). Freak wave kinematics. In O. T. Gudmestad, A. Tørum (Ed.), Water Wave Kinematics (pp. 535–549). Kluwer.

    Google Scholar 

  49. Sergeeva, A., Pelinovsky, E., & Talipova, T. (2011). Nonlinear random wave field in shallow water: variable Korteweg-de Vries framework. Natural Hazards and Earth System Sciences, 11, 323–330.

    Article  Google Scholar 

  50. Stokes, G. G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441–455.

    Google Scholar 

  51. Tamura, H., Waseda, T., & Miyazawa, Y. (2009). Freakish sea state and swell-windsea coupling: Numerical study of the Suwa-Maru incident. Geophysical Research Letters, 36, L01,607.

    Article  Google Scholar 

  52. Tayfun, M. A. (1980). Narrow-band nonlinear sea waves. Journal of Geophysical Research, 85, 1548–1552.

    Article  Google Scholar 

  53. Tick, L. J. (1959). A non-linear random model of gravity waves I. Journal of Mathematics and Mechanics, 8, 643–651.

    Google Scholar 

  54. Toffoli, A., & Bitner-Gregersen, E. M. (2011). Extreme and rogue waves in directional wave fields. Open Ocean Engineering Journal, 4, 24–33.

    Article  Google Scholar 

  55. Trulsen, K., & Dysthe, K. B. (1996). A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, 281–289.

    Article  Google Scholar 

  56. Trulsen, K., & Dysthe, K. B. (1997). Freak waves—a three-dimensional wave simulation. In: Proceedings of the 21st Symposium on Naval Hydrodynamics, National Academy Press (pp 550–560).

    Google Scholar 

  57. Trulsen, K., Kliakhandler, I., Dysthe, K. B., & Velarde, M. G. (2000). On weakly nonlinear modulation of waves on deep water. Physics of Fluids, 12, 2432–2437.

    Article  Google Scholar 

  58. Trulsen, K., Zeng, H., & Gramstad, O. (2012). Laboratory evidence of freak waves provoked by non-uniform bathymetry. Physics of Fluids, 24, 097,101.

    Article  Google Scholar 

  59. Trulsen, K., Nieto Borge, J. C., Gramstad, O., Aouf, L., & Lefèvre, J. M. (2015). Crossing sea state and rogue wave probability during the Prestige accident. Journal of Geophysical Research: Oceans, 120, 7113–7136.

    Google Scholar 

  60. Viotti, C., & Dias, F. (2014). Extreme waves induced by strong depth transitions: Fully nonlinear results. Physics of Fluids, 26, 051,705.

    Article  Google Scholar 

  61. Viste-Ollestad I, Andersen TL, Oma N, Zachariassen S (2016) Granskingsrapport etter hendelse med fatalt utfall på COSL Innovator 30. desember 2015. Tech. rep., Petroleumstilsynet

    Google Scholar 

  62. Waseda, T., Tamura, H., & Kinoshita, T. (2012). Freakish sea index and sea states during ship accidents. Journal of Marine Science and Technology, 17, 305–314.

    Article  Google Scholar 

  63. Waseda, T., In, K., Kiyomatsu, K., Tamura, H., Miyazawa, Y., & Iyama, K. (2014). Predicting freakish sea state with an operational third-generation wave model. Natural Hazards and Earth System Science, 14, 945–957.

    Article  Google Scholar 

  64. Zakharov, V. E. (1968). Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9, 190–194.

    Article  Google Scholar 

  65. Zeng, H., & Trulsen, K. (2012). Evolution of skewness and kurtosis of weakly nonlinear unidirectional waves over a sloping bottom. Natural Hazards and Earth System Science, 12, 631–638.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Research Council of Norway through the project “EXtreme wave WArning criteria for MARine structures” (ExWaMar) RCN 256466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Trulsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trulsen, K. (2018). Rogue Waves in the Ocean, the Role of Modulational Instability, and Abrupt Changes of Environmental Conditions that Can Provoke Non Equilibrium Wave Dynamics. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_17

Download citation

Publish with us

Policies and ethics