Deep-Ocean Tides in the South-West Indian Ocean: Comparing Deep-Sea Pressure to Satellite Data

  • Leo R. M. Maas
  • Borja Aguiar-González
  • Leandro Ponsoni
Part of the Springer Oceanography book series (SPRINGEROCEAN)


Deep ocean pressure measurements in two regions of the South-West Indian Ocean (West and East of Madagascar), covering one to two years of data, are analysed for tidal motions. The pressure data are taken both from Bottom Pressure Recorders as well as from mid-water column instruments. Coherent tides are characterised by fixed amplitudes and phases. Those inferred from bottom measurements compare well to tides obtained from satellite altimetry, and cover up to 99\(\%\) of the pressure variance in the frequency band having periods shorter than 29 h. Long-period tides, in the low-frequency band, are regularly overshadowed by (unwanted) eddy-induced mooring motion (‘blow-down’), which events have therefore been eliminated. In the Mozambique Channel, semidiurnal surface tides are stronger than East of Madagascar, and all appear to be near resonance with a basin mode. Away from the bottom, coherent internal tides were determined. Evidence of the presence of incoherent internal tides has been obtained by applying Harmonic Analyses over a moving time window of 1 year duration. East of Madagascar internal tides appear to be very strong, although its source remains unclear.



This work is dedicated to Eugene Morozov on the occasion of his seventieth birthday. The authors are thankful to Gary Egbert, Lana Erofeeva and Oregon State University for providing the altimetry-derived barotropic tides and to the Royal Netherlands Institute for Sea Research for providing the pressure data. Pressure data were collected in the INATEX program, ‘INdian-ATlantic EXchange in present and past climate’, funded by the Netherlands Organization for Scientific Research (NWO), section Earth and Life Sciences (ALW), through its ZKO Grant 839.08.43. The authors acknowledge Commonwealth Scientific and Industrial Research Organisation (CSIRO) for making available the Atlas of Regional Seas 2009 (CARS2009).


  1. 1.
    Alford, M. H. (2003). Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159–162.CrossRefGoogle Scholar
  2. 2.
    Badulin, S. I., Shrira, V. I., & Tsimring, L. S. (1985). The trapping and vertical focusing of internal waves in a pycnocline due to the horizontal inhomogeneities of density and currents. Journal of Fluid Mechanics, 158, 199–218.CrossRefGoogle Scholar
  3. 3.
    Berry, M. (1987). The Bakerian lecture 1987: quantum chaology. Proceedings of the Royal Society of London A, 413, 183–198.Google Scholar
  4. 4.
    Bewley, G. P., Lathrop, D. P., Maas, L. R. M., & Sreenivasan, K. R. (2007). Inertial waves in rotating grid turbulence. Physics of Fluids, 19(7), 071701.CrossRefGoogle Scholar
  5. 5.
    Boisson, J., Lamriben, C., Maas, L. R. M., Cortet, P. P., & Moisy, F. (2012). Inertial waves and modes excited by the libration of a rotating cube. Physics of Fluids, 24(7), 076602.CrossRefGoogle Scholar
  6. 6.
    Cartwright, D. E. (2000). Tides: A scientific history. Cambridge: Cambridge University Press.Google Scholar
  7. 7.
    Cartwright, D. E., & Ray, R. D. (1990). Oceanic tides from Geosat altimetry. Journal of Geophysical Research: Oceans, 95(C3), 3069–3090.CrossRefGoogle Scholar
  8. 8.
    da Silva, J. C. B., New, A. L., & Magalhães, J. M. (2009). Internal solitary waves in the Mozambique Channel: observations and interpretation. Journal of Geophysical Research, 114, C05001. Scholar
  9. 9.
    da Silva, J. C. B., New, A. L., & Magalhães, J. (2011). On the structure and propagation of internal solitary waves generated at the Mascarene Plateau in the Indian Ocean. Deep-Sea Research I, 58, 229–240.CrossRefGoogle Scholar
  10. 10.
    Defant, A. (1961). Physical oceanography (Vol. 2).Google Scholar
  11. 11.
    Dewey, R. K. (1999). Mooring design and dynamics: A Matlab package for designing and analyzing oceanographic moorings. Marine Models, 1(1), 103–157.CrossRefGoogle Scholar
  12. 12.
    Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183–204.CrossRefGoogle Scholar
  13. 13.
    Harlander, U., Ridderinkhof, H., Schouten, M. W. & de Ruijter, W. P. M. (2009). Long-term observations of transport, eddies, and Rossby waves in the Mozambique Channel, Journal of Geophysical Research, 114(C02003), 1–15.Google Scholar
  14. 14.
    Hendershott, M. C. (1981). Long waves and ocean tides. In Evolution of physical oceanography (pp. 292–341).Google Scholar
  15. 15.
    Hutter, K., Wang, Y., & Chubarenko, I. P. (2011). Physics of lakes. Springer.Google Scholar
  16. 16.
    Konyaev, K. V., Sabinin, K. D., & Serebryany, A. N. (1995). Large-amplitude internal waves at the Mascarene Ridge in the Indian Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 42(11–12), 20752083–20812091.Google Scholar
  17. 17.
    Kunze, E. (1985). Near-inertial wave propagation in geostrophic shear. Journal of Physical Oceanography, 15, 544–565.CrossRefGoogle Scholar
  18. 18.
    Lamriben, C., Cortet, P. P., Moisy, F., & Maas, L. R. M. (2011). Excitation of inertial modes in a closed grid turbulence experiment under rotation. Physics of Fluids, 23(1), 015102.CrossRefGoogle Scholar
  19. 19.
    LeBlond, P. H., & Mysak, L. A. (1981). Waves in the ocean. Elsevier.Google Scholar
  20. 20.
    Maas, L. R. M. (1997). On the nonlinear Helmholtz response of almost-enclosed tidal basins with sloping bottoms. Journal of Fluid Mechanics, 349, 361–380.CrossRefGoogle Scholar
  21. 21.
    Maas, L. R. M. (2003). On the amphidromic structure of inertial waves in a rectangular parallelepiped. Fluid Dynamics Research, 33, 373–401.CrossRefGoogle Scholar
  22. 22.
    Maas, L. R. M. (2011). Topographies lacking tidal conversion. Journal of Fluid Mechanics, 684, 5–24.CrossRefGoogle Scholar
  23. 23.
    Manders, A. M. M., Maas, L. R. M., & Gerkema, T. (2004). Observations of internal tides in the Mozambique Channel. Journal of Geophysical Research: Oceans, 109(C12).Google Scholar
  24. 24.
    Moum, J. N., & Nash, J. D. (2008). Seafloor pressure measurements of nonlinear internal waves. Journal of Physical Oceanography, 38(2), 481–491.CrossRefGoogle Scholar
  25. 25.
    Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42(1), 135–148.CrossRefGoogle Scholar
  26. 26.
    Munk, W. H., & Cartwright, D. E. (1966). Tidal spectroscopy and prediction. Philosophical Transactions of the Royal Society of London, 259(1105), 533–581.CrossRefGoogle Scholar
  27. 27.
    Nurijanyan, S., Bokhove, O., & Maas, L. R. M. (2013). A new semi-analytical solution for inertial waves in a rectangular parallelepiped. Physics of Fluids, 25(12), 126601.CrossRefGoogle Scholar
  28. 28.
    Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers and Geosciences, 28(8), 929–937.CrossRefGoogle Scholar
  29. 29.
    Platzman, G. W. (1971). Ocean tides and related waves. Mathematical Problems in the Geophysical Sciences, 14(Part 2), 239–291.Google Scholar
  30. 30.
    Ponsoni, L., Aguiar-González, B., Maas, L. R. M., van Aken, H. M., & Ridderinkhof, H. (2015). Long-term observations of the East Madagascar Undercurrent. Deep-Sea Research I, 100, 64–78.Google Scholar
  31. 31.
    Ponsoni, L., Aguiar-González, B., Ridderinkhof, H., & Maas, L. R. M. (2016). The East Madagascar Current: Volume transport and variability based on long-term observations. Journal of Physical Oceanography, 46(4), 1045–1065.CrossRefGoogle Scholar
  32. 32.
    Proudman, J. (1917). On the dynamic equation of the tides. Parts 1–3. Proceedings of the London Mathematical Society, Series 2, 18, 168.Google Scholar
  33. 33.
    Rao, D. (1966). Free gravitational oscillations in rotating rectangular basins. Journal of Fluid Mechanics, 25, 523–555.CrossRefGoogle Scholar
  34. 34.
    Ray, R. D. (2013). Precise comparisons of bottom-pressure and altimetric ocean tides. Journal of Geophysical Research: Oceans, 118(9), 4570–4584.Google Scholar
  35. 35.
    Ray, R. D., & Mitchum, G. T. (1997). Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, 35–162.Google Scholar
  36. 36.
    Ridderinkhof, H., van der Werf, P. M., Ullgren, J. E., van Aken, H. M., van Leeuwen, P. J. & de Ruijter, W. P. M. (2010). Seasonal and interannual variability in the Mozambique Channel from moored current observations. Journal of Geophysical Research: Oceans, 115(C06010), 1–18.Google Scholar
  37. 37.
    Schrama, E. J. O., & Ray, R. D. (1994). A preliminary tidal analysis of TOPEX/POSEIDON altimetry. Journal of Geophysical Research: Oceans, 99(C12), 24799–24808.CrossRefGoogle Scholar
  38. 38.
    Taylor, G. I. (1921). Tidal oscillations in gulfs and basins. Proceedings of the London Mathematical Society, Series 2, 148–181.Google Scholar
  39. 39.
    Terra, G. M., Doelman, A., & Maas, L. R. (2004). Weakly nonlinear cubic interactions in coastal resonance. Journal of Fluid Mechanics, 520, 93–134.CrossRefGoogle Scholar
  40. 40.
    Ullgren, J. E., van Aken, H. M., Ridderinkhof, H., & de Ruijter, W. P. M. (2012). The hydrography of the Mozambique Channel from six years of continuous temperature, salinity, and velocity observations. Deep Sea Research Part I: Oceanographic Research Papers, 69, 36–50.CrossRefGoogle Scholar
  41. 41.
    van Haren, H. (2013). Bottom-pressure observations of deep-sea internal hydrostatic and non-hydrostatic motions. Journal of Fluid Mechanics, 714, 591–611.CrossRefGoogle Scholar
  42. 42.
    Whewell, W. (1836). Researches on the tides. Sixth series. On the results of an extensive system of tide observations made on the coasts of Europe and America in June 1835. Phillosophical Transactions of the Royal Society of London, 126, 289–341.CrossRefGoogle Scholar
  43. 43.
    Zaron, E. D. & Egbert, G. D. (2007). The impact of the M2 internal tide on data-assimilative model estimates of the surface tide. Ocean Modelling, 18, 210–216.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Leo R. M. Maas
    • 1
    • 2
  • Borja Aguiar-González
    • 3
  • Leandro Ponsoni
    • 4
  1. 1.Institute for Marine and Atmospheric Research Utrecht, Utrecht UniversityUtrechtThe Netherlands
  2. 2.NIOZ Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  3. 3.Department of Ocean Systems SciencesNIOZ Royal Netherlands Institute for Sea Research, Utrecht UniversityDen Burg, TexelThe Netherlands
  4. 4.Georges Lemaître Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations