Advertisement

High-Resolution Observations of Internal Wave Turbulence in the Deep Ocean

  • Hans van Haren
Chapter
Part of the Springer Oceanography book series (SPRINGEROCEAN)

Abstract

An overview is presented of high-resolution temperature observations above underwater topography in the deep, generally stably stratified ocean. The Eulerian mooring technique is used by typically distributing 100 sensors over lines between 40 and 400 m long. The independent sensors sample at a rate of 1 Hz for up to one year with a precision better than 0.1 mK. This precision and sampling rate are sufficient to resolve all of the internal waves and their breaking including the large, energy containing turbulent eddies above underwater topography. Under conditions of a tight temperature-density relationship, the data are used to quantify turbulent overturns. The turbulent diapycnal mixing is important for the redistribution of nutrients, heat (to maintain the stable stratification) and the resuspension of sediment. The detailed observations show two distinctive turbulence processes that are associated with different phases of large-scale carriers (which are mainly tidal but also inertial, internal gravity waves or a sub-inertial sloshing motion): (i) highly nonlinear turbulent frontal bores during the upslope propagating phase, and (ii) Kelvin-Helmholtz billows, at some distance above the slope, during the downslope phase. While the former may be associated in part with convective turbulent overturning following Rayleigh-Taylor instabilities preceding and sharpening the bores, the latter are mainly related to shear-induced instabilities. Under weaker stratified conditions, away from boundaries, free convective mixing appears more often, but a clear inertial subrange in temperature spectra is indicative of dominant shear-induced turbulence. Turbulence is seen to increase in dissipation rate and diffusivity all the way to the bottom while stratification remains constant, which challenges the idea of a homogeneous ‘well-mixed bottom boundary layer’. With a newly developed five-lines mooring the transition is demonstrated from isotropy (full turbulence) to anisotropy (stratified turbulence/internal waves).

Notes

Acknowledgements

I greatly thank M. Laan, L. Gostiaux, A. Cimatoribus and F. Cyr for their discussions, collaboration in design and construction of NIOZ temperature sensors. NIOZ temperature sensors has been financed in part by NWO, the Netherlands Organization for Scientific Research.

References

  1. 1.
    Gill, A. E. (1982). Atmosphere-ocean dynamics (p. 662). Orlando Fl, USA: Academic Press.Google Scholar
  2. 2.
    Peixoto, J. P., & Oort, A. H. (1992). Physics of climate (p. 520). Melville NY, USA: AIP-Press.Google Scholar
  3. 3.
    Munk, W., & Wunsch, C. (1998). Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Research Part I: Oceanographic Research Papers, 45, 1977–2010.CrossRefGoogle Scholar
  4. 4.
    van Haren, H., Maas, L., Zimmerman, J. T. F., Ridderinkhof, H., & Malschaert, H. (1999). Strong inertial currents and marginal internal wave stability in the central North Sea. Geophysical Reseach Letters, 26, 2993–2996.CrossRefGoogle Scholar
  5. 5.
    Bell, T. H. (1975). Topographically generated internal waves in the open ocean. Journal Geophysical Research, 80, 320–327.CrossRefGoogle Scholar
  6. 6.
    LeBlond, P. H., & Mysak, L. A. (1978). Waves in the Ocean (p. 602). New York, USA: Elsevier.Google Scholar
  7. 7.
    Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep Sea Research Part I: Oceanographic Research Papers, 42, 135–148.CrossRefGoogle Scholar
  8. 8.
    Eriksen, C. C. (1982). Observations of internal wave reflection off sloping bottoms. Journal Geophysical Research, 87, 525–538.CrossRefGoogle Scholar
  9. 9.
    Thorpe, S. A. (1987). Current and temperature variability on the continental slope. Philosophical Transactions of the Royal Society of London A, 323, 471–517.CrossRefGoogle Scholar
  10. 10.
    Davies, A. M., Xing, J. (2005). The effect of a bottom shelf front upon the generation and propagation of near-inertial internal waves in the coastal ocean. Journal of Physical Oceanography, 35, 976–990.Google Scholar
  11. 11.
    Turner, J. S. (1979). Buoyancy effects in fluids (p. 368). Cambridge, UK: Cambridge University Press.Google Scholar
  12. 12.
    Sharp, D. H. (1984). An overview of Rayleigh-Taylor instability. Physica D, 12, 3–18.CrossRefGoogle Scholar
  13. 13.
    Marshall, J., & Schott, F. (1999). Open-ocean convection: Observations, theory and models. Reviews of Geophysics, 37, 1–64.CrossRefGoogle Scholar
  14. 14.
    Li, S., & Li, H. (2006). Parallel AMR code for compressible MHD and HD equations. T-7, MS B284, Theoretical division, Los Alamos National Laboratory, http://math.lanl.gov/Research/Highlights/amrmhd.shtml.
  15. 15.
    Matsumoto, Y., & Hoshino, M. (2004). Onset of turbulence by a Kelvin-Helmholtz vortex. Geophysical Reseach Letters, 31, L02807.  https://doi.org/10.1029/2003GL018195.Google Scholar
  16. 16.
    Inall, M. E., Rippeth, T. P., Griffiths, C. R., & Wiles, P. (2005). Evolution and distribution of TKE production and dissipation within stratified flow over topography. Geophysical Reseach Letters, 32, L08607.  https://doi.org/10.1029/2004GL022289.Google Scholar
  17. 17.
    Klymak, J. M., Legg, S., & Pinkel, R. (2010). A simple parameterization of turbulent tidal mixing near supercritical topography. Journal of Physical Oceanography, 40, 2059–2074.CrossRefGoogle Scholar
  18. 18.
    Cimatoribus, A. A., & van Haren, H. (2015). Temperature statistics above a deep-ocean sloping boundary. Journal of Fluid Mechanics, 775, 415–435.CrossRefGoogle Scholar
  19. 19.
    Winters, K. B. (2015). Tidally driven mixing and dissipation in the boundary layer above steep submarine topography. Geophysical Reseach Letters, 42, 7123–7130.  https://doi.org/10.1002/2015GL064676.CrossRefGoogle Scholar
  20. 20.
    Dauxois, T., Didier, A., & Falcon, E. (2004). Observation of near-critical reflection of internal waves in a stably stratified fluid. Physics of Fluids, 16, 1936–1941.CrossRefGoogle Scholar
  21. 21.
    Ivey, G. N., & Nokes, R. I. (1989). Vertical mixing due to the breaking of critical internal waves on sloping boundaries. Journal of Fluid Mechanics, 204, 479–500.CrossRefGoogle Scholar
  22. 22.
    van Haren, H., Groenewegen, R., Laan, M., & Koster, B. (2005). High sampling rate thermistor string observations at the slope of Great Meteor Seamount. Ocean Science, 1, 17–28.CrossRefGoogle Scholar
  23. 23.
    Hosegood, P., Bonnin, J., & van Haren, H. (2004). Solibore-induced sediment resuspension in the Faeroe-Shetland channel. Geophysical Reseach Letters, 31, L09301.  https://doi.org/10.1029/2004GL019544.Google Scholar
  24. 24.
    Munk, W. (1966). Abyssal recipes. Deep-Sea Research, 13, 707–730.Google Scholar
  25. 25.
    Armi, L. (1979). Effects of variations in eddy diffusivity on property distributions in the oceans. Journal of Marine Research, 37, 515–530.Google Scholar
  26. 26.
    Garrett, C. (1990). The role of secondary circulation in boundary mixing. Journal Geophysical Research, 95, 3181–3188.CrossRefGoogle Scholar
  27. 27.
    Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean-currents. Arkiv för Matematik, Astronomi och Fysik, 2(11), 1–52.Google Scholar
  28. 28.
    Weatherly, G. L., & Martin, P. J. (1978). On the structure and dynamics of the oceanic bottom boundary layer. Journal of Physical Oceanography, 8, 557–570.CrossRefGoogle Scholar
  29. 29.
    Dewey, R. K., Crawford, W. R., Gargett, A. E., & Oakey, N. S. (1987). A microstructure instrument for profiling oceanic turbulence in coastal bottom boundary layers. Journal of Atmospheric and Oceanic Technology, 4, 288–297.CrossRefGoogle Scholar
  30. 30.
    van Haren, H., Oakey, N., Garrett, C. (1994). Measurements of internal wave band eddy fluxes above a sloping bottom. Journal of Marine Research, 52, 909–946.Google Scholar
  31. 31.
    Polzin, K. L., Toole, J. M., Ledwell, J. R., Schmitt, R. W. (1997). Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96.Google Scholar
  32. 32.
    van Haren, H., & Gostiaux, L. (2012). Detailed internal wave mixing observed above a deep-ocean slope. Journal of Marine Research, 70, 173–197.CrossRefGoogle Scholar
  33. 33.
    Klymak, J. M., & Moum, J. N. (2003). Internal solitary waves of elevation advancing on a shoaling shelf. Geophysical Reseach Letters, 30, 2045.  https://doi.org/10.1029/2003GL017706.Google Scholar
  34. 34.
    Ferrari, R., Mashayek, A., McDougall, T. J., Nikurashin, M., & Campin, J. (2016). Turning ocean mixing upside down. Journal of Atmospheric and Oceanic Technology, 46, 2239–2261.Google Scholar
  35. 35.
    Tennekes, H., & Lumley, J. L. (1972). A first course in turbulence (p. 293). Cambridge, MA USA: MIT Press.Google Scholar
  36. 36.
    Thorpe, S. A. (1977). Turbulence and mixing in a Scottish loch. Philosophical Transactions of the Royal Society of London A, 286, 125–181.CrossRefGoogle Scholar
  37. 37.
    Dillon, T. M. (1982). Vertical overturns: A comparison of Thorpe and Ozmidov length scales. Journal Geophysical Research, 87, 9601–9613.CrossRefGoogle Scholar
  38. 38.
    Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., & Moum, J. N. (2015). Biases in Thorpe scale estimates of turbulence dissipation. Part I: Assessments from large-scale overturns in oceanographic data. Journal of Physical Oceanography, 45, 2497–2521.Google Scholar
  39. 39.
    Oakey, N. S. (1982). Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. Journal of Physical Oceanography, 12, 256–271.CrossRefGoogle Scholar
  40. 40.
    Osborn, T. R. (1980). Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10, 83–89.CrossRefGoogle Scholar
  41. 41.
    Galbraith, P. S., & Kelley, D. E. (1996). Identifying overturns in CTD profiles. Journal of Atmospheric and Oceanic Technology, 13, 688–702.CrossRefGoogle Scholar
  42. 42.
    Gargett, A. E., & Garner, T. (2008). Determining Thorpe scales from ship-lowered CTD density profiles. Journal of Atmospheric and Oceanic Technology, 25, 1657–1670.CrossRefGoogle Scholar
  43. 43.
    Stansfield, K., Garrett, C., & Dewey, R. (2001). The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait. Journal of Physical Oceanography, 31, 3421–3434.CrossRefGoogle Scholar
  44. 44.
    van Haren, H., & Gostiaux, L. (2014). Characterizing turbulent overturns in CTD-data. Dynamics of Atmospheres and Oceans, 66, 58–76.CrossRefGoogle Scholar
  45. 45.
    Fer, I., & Paskyabi, M. (2014). Autonomous ocean turbulence measurements using shear probes on a moored instrument. Journal of Atmospheric and Oceanic Technology, 31, 474–490.CrossRefGoogle Scholar
  46. 46.
    Lohrmann, A., Hackett, B., & Røed, L. P. (1990). High resolution measurements of turbulence, velocity and stress using a pulse-to-pulse coherent sonar. Journal of Atmospheric and Oceanic Technology, 7, 19–37.CrossRefGoogle Scholar
  47. 47.
    Rippeth, T. P., Williams, E., & Simpson, J. H. (2002). Reynolds stress and turbulent energy production in a tidal channel. Journal of Physical Oceanography, 32, 1242–1251.CrossRefGoogle Scholar
  48. 48.
    Gemmrich, J. R., & van Haren, H. (2002). Internal wave band eddy fluxes in the bottom boundary layer above a continental slope. Journal of Marine Research, 60, 227–253.CrossRefGoogle Scholar
  49. 49.
    van Haren, H., Laan, M., Buijsman, D.-J., Gostiaux, L., Smit, M. G., & Keijzer, E. (2009). NIOZ3: Independent temperature sensors sampling yearlong data at a rate of 1 Hz. IEEE Journal of Oceanic Engineering, 34, 315–322.CrossRefGoogle Scholar
  50. 50.
    IOC, SCOR, & IAPSO. (2010). The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, Paris, France, p. 196Google Scholar
  51. 51.
    van Haren, H., Greinert, J. (2016). Turbulent high-latitude oceanic intrusions – details of non-smooth apparent isopycnal transport West of Svalbard. Ocean Dynamics, 66, 785–794.Google Scholar
  52. 52.
    Gregg, M. C. (1989). Scaling turbulent dissipation in the thermocline. Journal Geophysical Research, 94, 9686–9698.CrossRefGoogle Scholar
  53. 53.
    Alford, M. H., & Pinkel, R. (2000). Observations of overturning in the thermocline: The context of ocean mixing. Journal of Physical Oceanography, 30, 805–832.CrossRefGoogle Scholar
  54. 54.
    Marmorino, G. O. (1987). Observations of small-scale mixing processes in the seasonal thermocline. Part II: Wave breaking. Journal of Physical Oceanography, 17, 1348–1355.CrossRefGoogle Scholar
  55. 55.
    van Haren, H., & Gostiaux, L. (2009). High-resolution open-ocean temperature spectra. Journal Geophysical Research, 114, C05005.  https://doi.org/10.1029/2008JC004967.Google Scholar
  56. 56.
    Munk, W. (1981). Internal waves and small-scale processes. In B. A. Warren & C. Wunsch (Eds.), Evolution of physical oceanography (pp. 264–291). Cambridge MA, USA: MIT Press.Google Scholar
  57. 57.
    Cyr, F., & van Haren, H. (2016). Observations of small-scale secondary instabilities during the shoaling of internal bores on a deep-ocean slope. Journal of Physical Oceanography, 46, 219–231.CrossRefGoogle Scholar
  58. 58.
    Geyer, W. R., Lavery, A. C., Scully, M. E., & Trowbridge, J. H. (2010). Mixing by shear instability at high Reynolds number. Geophysical Reseach Letters, 37, L22607.  https://doi.org/10.1029/2010GL045272.Google Scholar
  59. 59.
    van Haren, H. (2006). Nonlinear motions at the internal tide source. Geophysical Reseach Letters, 33, L11605.  https://doi.org/10.1029/2006GL025851.CrossRefGoogle Scholar
  60. 60.
    van Haren, H., Cimatoribus, A. A., Gostiaux, L. (2015). Where large deep-ocean waves break. Geophysical Research Letters, 42, 2351–2357,  https://doi.org/10.1002/2015GL063329.
  61. 61.
    van Haren, H. (2017). Exploring the vertical extent of breaking internal wave turbulence above deep-sea topography. Dynamics of Atmospheres and Oceans, 77, 89–99.CrossRefGoogle Scholar
  62. 62.
    van Haren, H., Gostiaux, L., Morozov, E., & Tarakanov, R. (2014). Extremely long Kelvin-Helmholtz billow trains in the Romanche Fracture Zone. Geophysical Reseach Letters, 41, 8445–8451.  https://doi.org/10.1002/2014GL062421.CrossRefGoogle Scholar
  63. 63.
    Thorpe, S. A. (1973). Experiments on instability and turbulence in a stratified shear flow. Journal of Fluid Mechanics, 61, 731–751.CrossRefGoogle Scholar
  64. 64.
    Klaassen, G. P., & Peltier, W. R. (1985). The onset of turbulence in finite-amplitude Kelvin-Helmholtz billow. Journal of Fluid Mechanics, 155, 1–35.CrossRefGoogle Scholar
  65. 65.
    Woods, J. D. (1968). Wave-induced shear instability in the summer thermocline. Journal of Fluid Mechanics, 32, 791–800.CrossRefGoogle Scholar
  66. 66.
    Moum, J. M., Farmer, D. M., Smyth, W. D., Armi, L., & Vagle, S. (2003). Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf. Journal of Physical Oceanography, 33, 2093–2112.CrossRefGoogle Scholar
  67. 67.
    van Haren, H., Cimatoribus, A. A., Cyr, F., & Gostiaux, L. (2016). Insights from a 3-D temperature sensors mooring on stratified ocean turbulence. Geophysical Reseach Letters, 43, 4483–4489.  https://doi.org/10.1002/2016GL068032.CrossRefGoogle Scholar
  68. 68.
    Thurnherr, A. M., Richards, K. J., German, C. R., Lane-Serff, G. F., & Speer, K. G. (2002). Flow and mixing in the Rift Valley of the Mid-Atlantic Ridge. Journal of Physical Oceanography, 32, 1763–1778.CrossRefGoogle Scholar
  69. 69.
    Melet, A., Hallberg, R., Legg, S., & Nikurashin, M. (2014). Sensivity of the ocean state to lee-wave driven mixing. Journal of Physical Oceanography, 40, 900–921.CrossRefGoogle Scholar
  70. 70.
    Cacchione, D. A., & Drake, D. E. (1986). Nepheloid layers and internal waves over continental shelves and slopes. Geo-Marine Letters, 16, 147–152.CrossRefGoogle Scholar
  71. 71.
    Cyr, F., van Haren, H., Mienis, F., Duineveld, G., & Bourgault, D. (2016). On the influence of cold-water coral mound size on flow hydrodynamics, and vice-versa. Geophysical Reseach Letters, 43, 775–783.  https://doi.org/10.1002/2015GL067038.CrossRefGoogle Scholar
  72. 72.
    Tsuchiya, M., Talley, L. D., & McCartney, M. S. (1992). An eastern Atlantic section from Iceland southward across the equator. Deep Sea Research Part A. Oceanographic Research Papers, 39, 1885–1917.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Royal Netherlands Institute for Sea Research (NIOZ)Utrecht UniversityDen BurgThe Netherlands

Personalised recommendations