Skip to main content

Method for Calculating Quantum Efficiency and Spectral Response of Solar Cells Using LabVIEW

  • Chapter
  • First Online:
Building-Integrated Photovoltaic Systems (BIPVS)

Abstract

This chapter presents the classical procedures for calculating the short-circuit spectral current density for the base and for the emitter of a solar cell. Subsequently, the quantum efficiency and the spectral response are calculated. The method is performed with virtual instrumentation through LabVIEW’s graphical programming language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Bisquert, Dilemmas of Dye sensitized solar cells. ChemPhysChem 12, 1633–1636 (2011)

    Article  Google Scholar 

  2. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, All solid state dye sensitized solar cells with high efficiency. Nature 485 (2012)

    Google Scholar 

  3. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  4. M. Gratzel, Recent advances in sensitized mesoscopic solar cells. Acc. Chem. Res. 42, 1788–1798 (2009)

    Article  Google Scholar 

  5. H. Yang, H. Wang, M. Wang, Investigation of open-circuit voltage in solar grade silicon solar cells from a metallurgical process route and cell’s defect. Clean Techn. Environ. Policy 15, 111–116 (2013)

    Article  Google Scholar 

  6. A.A. Istratov, T. Buonassisi, R.J. McDonald, et al., Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. J. Appl. Phys. 94, 6552–6557 (2003)

    Article  Google Scholar 

  7. B. Andó, S. Graziani, N. Pitrone, Stand-alone laboratory sessions in sensors and signal process- ing. IEEE Trans. Educ. 47, 4–9 (2004)

    Article  Google Scholar 

  8. M. Nagistris, A Matlab-based virtual laboratory for teaching introductory quasi-stationary electro-magnetics. IEEE Trans. Educ. 48, 81–88 (2005)

    Article  Google Scholar 

  9. T.W. Gedra, A. Seungwon, Q.H. Arsalan, S. Ray, Unified power engineering laboratory for electromechanical energy conversion, power electronics and power systems. IEEE Trans. Power Systems 19, 112–119 (2004)

    Article  Google Scholar 

  10. Desarrollo de celdas solares basadas en CuInSe2 usando nuevos materiales buffer en su estructura. Clara Lilia Calderon Triana. Doctoral thesis. Universidad Nacional de Colombia (2003)

    Google Scholar 

  11. A. Luque, S. Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (John Wiley & Sons, Ltd, New York, 2003.) ISBN: 0-471-49196-9

    Google Scholar 

  12. Síntesis y Caracterización de Nuevos Materiales No Tóxicos Empleados como Capa Buffer y Capa Absorbente en la Fabricación de Celdas Solares. Mónica Andrea Botero Londoño. Doctoral thesis. Universidad Nacional de Colombia. Bogotá (2008)

    Google Scholar 

  13. A. L. Fahrenbruch, R. H. Bibe (eds.), Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversión (Academia Press, Inc., New York, 1983.) ISBN: 0-12-247680-8

    Google Scholar 

  14. L. Castañer, S. Silvestre, Modelling Photovoltaic Systems Using PSpice (Ed. Wiley, New York, 2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aristizábal Cardona, A.J., Páez Chica, C.A., Ospina Barragán, D.H. (2018). Method for Calculating Quantum Efficiency and Spectral Response of Solar Cells Using LabVIEW. In: Building-Integrated Photovoltaic Systems (BIPVS). Springer, Cham. https://doi.org/10.1007/978-3-319-71931-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71931-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71930-6

  • Online ISBN: 978-3-319-71931-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics