Skip to main content

Conceptual Framework

  • Chapter
  • First Online:
Building-Integrated Photovoltaic Systems (BIPVS)

Abstract

Solar energy is transformed directly into electricity by photovoltaic cells. This process is based on the application of the photovoltaic effect, which occurs when light hits on materials called semiconductors. Light is composed of photons, which are energetic particles. These photons are of different energies corresponding to the different wavelengths of the solar spectrum. When photons strike a photovoltaic cell, they can be reflected or absorbed, or can pass through it. Only the absorbed photons can generate electricity. When a photon is absorbed, the photon energy is transferred to an electron of an atom of the cell. With this new energy, the electron is able to escape its normal position associated with an atom to form part of a current in an electric circuit [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Falk, C. Durschner, K.H. Remmers, Photovoltaics for Professionals, Solar Electric Systems, Marketting, Design and Installation (Solarpraxis AG, Berlin., Earthscan, London, 2007)

    Google Scholar 

  2. R.M.G. Castro, Introdução à Energia Fotovoltaica (Universidade Tecnica de Lisboa, Instituto Superior Técnico, Maio, 2008)

    Google Scholar 

  3. R. Khezzar, M. Zereg, A. Khezzar, Comparative Study of Mathematical Methods for Parameters Calculation of Current-Voltage Characteristic of Photovoltaic Modules, in Proceedings of International conference on Electrical and Electronics Engineering, (2009), pp. 24–28

    Google Scholar 

  4. T. Markvart, Solar Electricity (John Wiley and Sons, Inc., NY, 2000)

    Google Scholar 

  5. S. Stoft, Power System Economics: Designing Markets for Electricity (IEEE Wiley Interscience, Hoboken, 2002)

    Book  Google Scholar 

  6. T. Ackermann, G. Andersson, L. Soder, Distributed generation: a definition. Electr. Power Syst. Res. 71, 119–128 (2004)

    Article  Google Scholar 

  7. International Energy Agency, Contribution of Renewables to Energy Security (IEA, Paris, 2007)

    Google Scholar 

  8. International Energy Agency, Security of Supply in Electricity Markets: Evidence and Policy Issues (IEA, Paris, 2002)

    Google Scholar 

  9. S.J. Murillo Joaquin, P. Roldán Carlos, Model of Application of Distributed Generation in Colombia Rural Zones. Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES

    Google Scholar 

  10. C.I. Buriticá-Arboleda, C. Álvarez-Bel, Decentralized Energy: Key to Improve the Electric Supply Security.  Conference on Innovative Smart Grid Technologies (ISGT Latin America), 2011 IEEE PES

    Google Scholar 

  11. D. Cristhian, M. Eduardo Felipe, R. de T., María Teresa, Análisis de prospectiva de la generación distribuida (gd) en el sector eléctrico colombiano. Revista de Ingeniería, n. 19, p. 81–89, may 2014

    Google Scholar 

  12. Y. Garzón, F. Tunarosa, Smart Grids and Distributed Generation in Colombia.Revista Vínculos, Universidad Distrital, n.10 (2), p. 303–309 (2013)

    Google Scholar 

  13. J. C. Gómez, Senior Member IEEE, Generación Distribuida: Impacto en la Calidad de Potencia y en las Protecciones (2008)

    Google Scholar 

  14. H. Torres, Impacto en la Estabilidad de un Sistema de Potencia al Integrar Generación Distribuida (Universidad Tecnológica de Pereira, pereira, 2008)

    Google Scholar 

  15. S. Carvajal, J. Marin, The Impact of Distributed Generation on the Colombian Electrical Power System: A Dynamic-System Approach.Tecnura n. 35 (17), p. 77–89 (2013)

    Google Scholar 

  16. IEEE Recommended Practice For Monitoring Electric Power Quality. IEEE Std 1159–1995

    Google Scholar 

  17. J. de Leonardo, C. Cardona, W.H. Zapata, J.H. Velásquez, R.H. Ortiz, Quality of Electrical Power in a Distribution System (MedellIn, Colombia, 1999)

    Google Scholar 

  18. R.C. Dugan, M.F. McGranaghan, H. Wayne Beaty, Electrical Power Systems Quality (McGraw-Hill, New York, 1996)

    Google Scholar 

  19. Design of Reliable Industrial and Commercial Power Systems. CENELEC 493–1997

    Google Scholar 

  20. IEEE Recommended Practice for Monitoring Power Quality. IEEE Std 1159–1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aristizábal Cardona, A.J., Páez Chica, C.A., Ospina Barragán, D.H. (2018). Conceptual Framework. In: Building-Integrated Photovoltaic Systems (BIPVS). Springer, Cham. https://doi.org/10.1007/978-3-319-71931-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71931-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71930-6

  • Online ISBN: 978-3-319-71931-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics