Skip to main content

Application of Neural Networks to Validate the Power Generation of BIPVS

  • Chapter
  • First Online:
  • 820 Accesses

Abstract

Since the BIPVS offers the possibility to replace part of the traditional building materials, with a possible price reduction, in comparison to a classic rooftop installation [1, 2], then the correct estimation of system level performances, system reliability and system availability is becoming more important and popular among installers, integrators, investors and owners; with that purpose several tools and models were developed [3–5]. The combination of different phenomena, such as solar radiation available on site, dust presence, shadowing or UV radiation over long outdoor exposure, affect in different ways the real performance of BIPV systems and thus the related economic evaluations [6–8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Campoccia, L. Dusonchet, E. Telaretti, G. Zizzo, An analysis of feed’ in tariffs for solar PV in six representative countries of the European Union. Sol. Energy 107, 530–542 (2014.) https://doi.org/10.1016/j.solener.2014.05.047

    Article  Google Scholar 

  2. T. James, A. Goodrich, M. Woodhouse, R. Margolis, S. Ong, Building-integrated photovoltaics (BIPV) in the residential sector: an analysis of installed rooftop system prices. Energy 50 (2011). https://doi.org/10.2172/1029857

  3. V.J. Chin, Z. Salam, K. Ishaque, Cell modelling and model parameters estimation techniques for photovoltaic simulator application: a review. Appl. Energy 154, 500–519 (2015). https://doi.org/10.1016/j.apenergy.2015.05.035

    Article  Google Scholar 

  4. V. Lo Brano, G. Ciulla, M.D. Falco, Artificial neural networks to predict the power output of a PV panel. Int. J. Photoenergy 2014, 193083 (2014)

    Article  Google Scholar 

  5. W. Zhou, H. Yang, Z. Fang, A novel model for photovoltaic array performance prediction. Appl. Energy 84, 1187–1198 (2007). https://doi.org/10.1016/j.apenergy.2007.04.006

    Article  Google Scholar 

  6. V. Sharma, S.S. Chandel, Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renew. Sust. Energ. Rev. 27, 753–767 (2013). https://doi.org/10.1016/j.rser.2013.07.046

    Article  Google Scholar 

  7. F.R. Chica, J. Aristizábal, Application of autoregressive model with exogenous inputs to identify and analyse patterns of solar global radiation and ambient temperature. Int J Ambient Energy 33(4), 177–183 (2012)

    Article  Google Scholar 

  8. J. Aristizábal, G. Gordillo, Performance and economic evaluation of the first grid – connected installation in Colombia over 4 years of continuous operation. Int J Sustain Energy 30(1), 34–46 (2011)

    Article  Google Scholar 

  9. T. Ikegami, T. Maezono, F. Nakanishi, Y. Yamagata, K. Ebihara, Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system. Sol. Energy Mater. Sol. Cells 67(1–4), 389e395 (2001)

    Google Scholar 

  10. A.N. Celik, N. Acikgoz, Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models. Appl. Energy 84(1), 1–15 (2007)

    Article  Google Scholar 

  11. J.D. Mondol, Y.G. Yohanis, B. Norton, Comparison of measured and predicted long term performance of grid a connected photovoltaic system. Energy Convers. Manag. 48(4), 1065–1080 (2007)

    Article  Google Scholar 

  12. K. Ishaque, Z. Salam, H. Taheri, Simple, fast and accurate two-diode model for photovoltaic modules. Sol. Energy Mater. Sol. Cells 95(2), 586–594 (2011)

    Article  Google Scholar 

  13. K. Ishaque, Z. Salam, H. Taheri, Syafaruddin, Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simul. Model. Pract. Theory 19(7), 1613–1626 (2011)

    Article  Google Scholar 

  14. M.G. Villalva, J.R. Gazoli, E. Ruppert, Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electr. 24(5–6), 1198–1208 (2009)

    Article  Google Scholar 

  15. Y. Mahmoud, W. Xiao, H.H. Zeineldin, A simple approach to modeling and simulation of photovoltaic modules. IEEE Trans. Sustain. Energy 3(1), 185–186 (2012)

    Article  Google Scholar 

  16. R. Chenni, M. Makhlouf, T. Kerbache, A. Bouzid, A detailed modeling method for photovoltaic cells. Energy 32(9), 1724–1730 (2007)

    Article  Google Scholar 

  17. F. Bonanno, G. Capizzi, G. Graditi, C. Napoli, G.M. Tina, A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy 97, 956–961 (2012)

    Article  Google Scholar 

  18. E. Karatepe, M. Boztepe, M. Colak, Neural network based solar cell model. Energy Convers. Manag. 47(9–10), 1159–1178 (2006)

    Article  Google Scholar 

  19. K. Ishaque, Z. Salam, An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy 85(9), 2349–2359 (2011)

    Article  Google Scholar 

  20. M. Zagrouba, A. Sellami, M. Bouaicha, M. Ksouri, Identification of PV solar cells and modules parameters using the genetic algorithms: application to maximum power extraction. Sol. Energy 84(5), 860–866 (2010)

    Article  Google Scholar 

  21. L. Sandrolini, M. Artioli, U. Reggiani, Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Appl. Energy 87(2), 442–451 (2010)

    Article  Google Scholar 

  22. C. Huang, A. Bensoussan, M. Edesess, K.L. Tsui, Improvement in artificial neural network-based estimation of grid connected photovoltaic power output. Renew. Energy 97, 838–848 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aristizábal Cardona, A.J., Páez Chica, C.A., Ospina Barragán, D.H. (2018). Application of Neural Networks to Validate the Power Generation of BIPVS. In: Building-Integrated Photovoltaic Systems (BIPVS). Springer, Cham. https://doi.org/10.1007/978-3-319-71931-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71931-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71930-6

  • Online ISBN: 978-3-319-71931-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics