Skip to main content

Cascades and Myopic Routing in Nonhomogeneous Kleinberg’s Small World Model

  • Conference paper
  • First Online:
Book cover Web and Internet Economics (WINE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10660))

Included in the following conference series:

Abstract

Kleinberg’s small world model [20] simulates social networks with both strong and weak ties. In his original paper, Kleinberg showed how the distribution of weak-ties, parameterized by \(\gamma \), influences the efficacy of myopic routing on the network. Recent work on social influence by k-complex contagion models discovered that the distribution of weak-ties also impacts the spreading rate in a crucial manner on Kleinberg’s small world model [15]. In both cases the parameter of \(\gamma = 2\) proves special: when \(\gamma \) is anything but 2 the properties no longer hold.

In this work, we propose a natural generalization of Kleinberg’s small world model to allow node heterogeneity: instead of a single global parameter \(\gamma \), each node has a personalized parameter \(\gamma \) chosen independently from a distribution \(\mathcal {D}\). In contrast to the original model, we show that this model enables myopic routing and k-complex contagions on a large range of the parameter space, improving the robustness of the model. Moreover, we show that our generalization is supported by real-world data. Analysis of four different social networks shows that the nodes do not show homogeneity in terms of the variance of the lengths of edges incident to the same node.

J. Gao would like to acknowledge support through NSF DMS-1418255, CCF-1535900, CNS-1618391, DMS-1737812 and AFOSR FA9550-14-1-0193. G. Schoenebeck and F. Yu gratefully acknowledge the support of the National Science Foundation under Career Award 1452915 and AitF Award 1535912.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In order to eliminate the boundary effect, we wrap up the grid into a torus – i.e., the top boundary is identified with the bottom boundary and the left boundary is identified with the right boundary.

  2. 2.

    For discrete distribution, the probability density function exists if we allow using Dirac delta function.

  3. 3.

    The scalar depends on the constants \(k, \eta , \alpha , K\).

References

  1. Adler, J.: Bootstrap percolation. Phys. A: Stat. Theor. Phys. 171(3), 453–470 (1991)

    Article  Google Scholar 

  2. Amini, H.: Bootstrap percolation and diffusion in random graphs with given vertex degrees. Electr. J. Comb. 17(1), R25 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Amini, H., Fountoulakis, N.: What i tell you three times is true: bootstrap percolation in small worlds. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 462–474. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-6_34

    Chapter  Google Scholar 

  4. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30, 257–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boguna, M., Krioukov, D., Claffy, K.C.: Navigability of complex networks. Nat. Phys. 5, 74–80 (2009)

    Article  Google Scholar 

  6. Bollobás, B., Chung, F.R.K.: The diameter of a cycle plus a random matching. SIAM J. Discret. Math. 1(3), 328–333 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burt, R.S.: Structural Holes: The Social Structure of Competition. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  8. Burt, R.S.: Structural Holes: The social structure of competition. Harvard University Press, Cambridge (1995)

    Google Scholar 

  9. Chalupa, J., Leath, P.L., Reich, G.R.: Bootstrap percolation on a Bethe lattice. J. Phys. C: Solid State Phys. 12(1), L31 (1979)

    Article  Google Scholar 

  10. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301, 827 (2003)

    Article  Google Scholar 

  11. Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 409–410 (1998)

    Article  MATH  Google Scholar 

  12. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: How complex contagions in preferential attachment models and other time-evolving networks. IEEE Trans. Netw. Sci. Eng. PP(99), 1 (2017). https://doi.org/10.1109/TNSE.2017.2718024. ISSN 2327–4697

    Article  Google Scholar 

  13. Ebrahimi, R., Gao, J., Ghasemiesfeh, G., Schoenebeck, G.: Complex contagions in Kleinberg’s small world model. In: Proceedings of the 6th Innovations in Theoretical Computer Science (ITCS 2015), pp. 63–72. January 2015

    Google Scholar 

  14. Gao, J., Ghasemiesfeh, G., Schoenebeck, G., Yu, F.-Y.: General threshold model for social cascades: analysis and simulations. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 617–634. ACM (2016)

    Google Scholar 

  15. Ghasemiesfeh, G., Ebrahimi, R., Gao, J.: Complex contagion and the weakness of long ties in social networks: revisited. In: Proceedings of the fourteenth ACM conference on Electronic Commerce, pp. 507–524. ACM (2013)

    Google Scholar 

  16. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  17. Jackson, M.O.: Social and Economic Networks. Princeton University Press, Princeton (2008). ISBN 0691134405, 9780691134406

    MATH  Google Scholar 

  18. Janson, S., Luczak, T., Turova, T., Vallier, T.: Bootstrap percolation on the random graph \({G}_{n, p}\). Ann. Appl. Probab. 22(5), 1989–2047 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jeong, H., Mason, S.P., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  20. Kleinberg, J., The small-world phenomenon: an algorithm perspective. In: Proceedings of the 32-nd Annual ACM Symposium on Theory of Computing, pp. 163–170 (2000)

    Google Scholar 

  21. Krioukov, D., Papadopoulos, F., Boguna, M., Vahdat, A.: Greedy forwarding in scale-free networks embedded in hyperbolic metric spaces. In: ACM SIGMETRICS Workshop on Mathematical Performance Modeling and Analysis (MAMA) June 2009

    Google Scholar 

  22. Kumar, R., Liben-Nowell, D., Tomkins, A.: Navigating low-dimensional and hierarchical population networks. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 480–491. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_44. ISBN 3-540-38875-3

    Chapter  Google Scholar 

  23. Milgram, S.: The small world problem. Phychol. Today 1, 61–67 (1967)

    Google Scholar 

  24. Newman, M.E.J., Moore, C., Watts, D.J.: Mean-field solution of the small-world network model. Phys. Rev. Lett. 84, 3201–3204 (2000)

    Article  Google Scholar 

  25. Schoenebeck, G., Yu, F.-Y.: Complex contagions on configuration model graphs with a power-law degree distribution. In: Cai, Y., Vetta, A. (eds.) WINE 2016. LNCS, vol. 10123, pp. 459–472. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-54110-4_32

    Chapter  Google Scholar 

  26. Travers, J., Milgram, S.: An experimental study of the small world problem. Sociometry 32, 425 (1969)

    Article  Google Scholar 

  27. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  28. Williams, R.J., Berlow, E.L., Dunne, J.A., Barabasi, A.L., Martinez, N.D.: Two degrees of separation in complex food webs. Proc. Nat. Acad. Sci. 99(20), 12913–12916 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-Yi Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, J., Schoenebeck, G., Yu, FY. (2017). Cascades and Myopic Routing in Nonhomogeneous Kleinberg’s Small World Model. In: R. Devanur, N., Lu, P. (eds) Web and Internet Economics. WINE 2017. Lecture Notes in Computer Science(), vol 10660. Springer, Cham. https://doi.org/10.1007/978-3-319-71924-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71924-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71923-8

  • Online ISBN: 978-3-319-71924-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics