Wetlands Associated with Basaltic Plateaus and Their Identification by Means of Remote Sensing Techniques

Chapter
Part of the The Latin American Studies Book Series book series (LASBS)

Abstract

The present chapter offers the studies accomplished in the “mallines” or wet meadows associated with basaltic plateaus in the provinces of Neuquén and Santa Cruz in different working scales, and which are later exposed in the following chapters. Likewise, the remote sensing techniques used for the identification and cartography of these wetlands are described, which encompass a relevant methodological tool to perform their inventory that has never been completed yet in this region.

Keywords

Patagonia Wet meadows Remote sensing Visual interpretation Digital classification 

References

  1. Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands Ecol. Management (2010) 18:281–296. https://doi.org/10.1007/s11273-009-9169-z
  2. Ayesa J, Bran D, López C, Marcolín A, Barrios D (1999) Aplicación de la teledetección para la caracterización y clasificación utilitaria de valles y Mallines. Revista Argentina de Producción Animal 19:133–138. Buenos AiresGoogle Scholar
  3. Baker C, Lawrence R, Montagne C, Patten D (2006) Mapping wetlands and riparian areas using LANDSAT ETM + imagery and decision-tree-based models. Wetlands 26(2):465–474 CrossRefGoogle Scholar
  4. Baker C, Lawrence R, Montagne C, Patten D (2007) Change detection of wetland ecosystems using landsat imagery and change vector analysis. Wetlands 27(3):610–619CrossRefGoogle Scholar
  5. Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens Environ 105:54–67CrossRefGoogle Scholar
  6. Boelcke O (1957) Comunidades herbáceas del Norte de la Patagonia y sus relaciones con la ganadería. Rev Invest Agric 11:5–98. Buenos AiresGoogle Scholar
  7. Brinson M (2004) Niveles extremos de variación de patrones y procesos en humedales. In: Malvárez AI, Bó F (eds) Documentos del curso taller Bases ecológicas para la clasificación e inventario de humedales en Argentina. Buenos Aires, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires; Ramsar; USFWS; USDSGoogle Scholar
  8. Buono G, Oesterheld M, Nakamatsu V, Paruelo JM (2010) Spatial and temporal variation of primary production of Patagonian wet meadows. J Arid Environ 74:1257–1261CrossRefGoogle Scholar
  9. Chen L, Zhenyu Jin Z, Michishita R, Cai J, Yue T, Chen B, Xu B (2014) Dynamic monitoring of wetland cover changes using time-series remote sensing imagery. Ecol Inform 24(2014):17–26CrossRefGoogle Scholar
  10. Coppin P, Jonckhere I, Nackaerts K, Mays B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596CrossRefGoogle Scholar
  11. Chuvieco E (2010) Teledetección ambiental. Editorial Ariel, BarcelonaGoogle Scholar
  12. Crego R, Didier K, Nielsen C (2014) Modeling meadow distribution for conservation action in arid and semi-arid Patagonia, Argentina. J Arid Environ 102:68–75. https://doi.org/10.1016/j.jaridenv.2013.11.008 CrossRefGoogle Scholar
  13. Cowardin LM, Myers VI (1974) Remote sensing for identification and classification of wetland vegetation. J Wildl Manag 38(2):308–314CrossRefGoogle Scholar
  14. Dahl TE (2006) Status and trends of wetlands in the conterminous United States 1998 to 2004. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC, p 112Google Scholar
  15. Dechka JA, Franklin SE, Watmough MD, Bennett RP, Ingstrup DW (2002) Classification of wetland habitat and vegetation communities using multi-temporal Ikonos imagery in southern Saskatchewan. Can J Remote Sens 28(5):679–685CrossRefGoogle Scholar
  16. Ferrer J, Mazzoni E (2014) Mallines del Oeste Neuquino. Asociación Argentina de la Ciencia del Suelo, Buenos AiresGoogle Scholar
  17. Gaitán JJ, Bran D, Ayesa J. Raffo F (2015) Evaluación y cartografía de mallines de las zonas de Loncopué y Chos Malal, provincia del Neuquén. Comunicación técnica 131, INTA. http://inta.gob.ar/sites/default/files/inta-informe_final_ap2_y_ap3_ctecnica.pdf
  18. Gandullo R, Peña O, Campo A (2006) Variación temporal y espacial de parches, corredores y matriz en un humedal (“mallín”) del centro-oeste de la provincia de Neuquén. Geograficando 2(2):125–145Google Scholar
  19. Ghosh S, Mishra D, Gitelson A (2016) Long-term monitoring of biophysical characteristics of tidal wetlands in the northern Gulf of Mexico—A methodological approach using MODIS. Remote Sens Environ 173:39–58. Online publication date: 1-Feb-2016Google Scholar
  20. Hladik C, Schalles J, Alber M (2013) Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens of Environ 139:318–330. Online publication date: 1-Dec-2013Google Scholar
  21. Hu Y, Huang J, Du Y, Han P, Huang W (2015) Monitoring spatial and temporal dynamics of flood regimes and their relation to wetland landscape patterns in Dongting Lake from MODIS Time-Series Imagery. Remote Sens 7:7494–7520CrossRefGoogle Scholar
  22. Irisarri J, Oesterheld M, Paruelo J, Texeira M (2012) Patterns and controls of above-ground net primary production in meadows of Patagonia. a remote sensing approach. J Veg Sci 23:114–126CrossRefGoogle Scholar
  23. Jensen RR (1986) Introductory digital image processing: a remote sensing perspective. Prentice Hall Inc, Old Tappan, New Jersey, USAGoogle Scholar
  24. Jensen RR, Mausel P, Dias N, Gonser R, Yang C, Everitt J, Fletcher R (2007) Spectral analysis of coastal vegetation and land cover using AISA + hyperspectral data. Geocarto Int 22:17–28CrossRefGoogle Scholar
  25. Klemas V (2009) Sensors and techniques for observing coastal ecosystems. In: Yang X (ed) Remote sensing and geospatial technologies for coastal ecosystem assessment and management. Springer-Verlag, BerlinGoogle Scholar
  26. Klemas V (2011) Remote sensing of wetlands: case studies comparing practical techniques. J Coast Res 27(3):418–427. West Palm Beach (Florida)Google Scholar
  27. Klemas V (2014) Remote sensing of riparian and wetland buffers: an overview. J Coast Res 869–880. Online publication date: 29-May-2014Google Scholar
  28. Klemas V (2015) Coastal and environmental remote sensing from unmanned aerial vehicles: an overview. J Coast Res 1260–1267. Online publication date: 13-Apr-2015Google Scholar
  29. Kovacs JM, Wang JF, Flores-Verdugo F (2005) Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar Coast Shelf Sci 62:377–384CrossRefGoogle Scholar
  30. Lillesand T, Kiefer R, Chipman J (2014) Remote sensing and image interpretation. John Wiley & Sons, p 704Google Scholar
  31. López C, Gaitán J, Siffredi G, Ayesa J, Umaña F, Lagorio P (2005) Desarrollo de un sistema de información geográfico (SIG) como herramienta para la planificación y manejo del pastoreo en mallines del Departamento de Pilcaniyeu, Río Negro. Revista Científica Agropecuaria 9(2):163–171, Facultad de Ciencias Agropecuarias, UNERGoogle Scholar
  32. Lunetta RS, Balogh ME (1999) Application of multi-temporal landsat 5 TM imagery for wetland identification. Photogram Eng and Remote Sens 65:1303–1310Google Scholar
  33. Lyon JG, Greene RG (1992) Use of aerial photographs to measure the historical areal extent of Lake Erie coastal wetlands. Photogram Engr Remote Sens 58(9):1355–1360Google Scholar
  34. Madden M, Jordan T, Bernardes S, Cotten D, O’Hare N, Pasqua, A (2015) Unmanned aerial systems and structure from motion revolutionize wetlands mapping. Remote Sens of Wetlands 195–220Google Scholar
  35. Manzo C, Valentini E, Taramelli A, Filipponi F, Disperati L. 2015. Spectral characterization of coastal sediments using field spectral libraries, airborne hyperspectral images and topographic LiDAR data (FHyL). Int J Appl Earth Obs and Geoinf 36: 54–68. Online publication date: 1-Apr-2015Google Scholar
  36. Marcolín A, Durañona G, Ortíz R, Sourrouille E, Latour M, Larrama G (1978) Caracterización de mallines en un área del sudoeste de la Provincia de Río Negro. 8° Reunión Argentina de la Ciencia del Suelo. EEA—INTA Bariloche, p. 18. San Carlos de Bariloche, ArgentinaGoogle Scholar
  37. May AMB, Pinder JE, Kroh GC (1997) A comparison of LANDSAT thematic mapper and SPOT multi-spectral imagery for the classification of shrub and meadow vegetation in Northern California, USA. Int J Remote Sens 18:3719–3728CrossRefGoogle Scholar
  38. Mazzoni E (2005) Distribución espacial de humedales en la meseta patagónica. Provincia del Neuquén, Argentina. Anales de la Sociedad Chilena de Estudios Geográficos 81–86Google Scholar
  39. Mazzoni E (2007) Geomorfología y evolución geomorfológica de paisajes volcánicos y sus mallines asociados en diferentes ambientes de la Patagonia extra-andina. Unpublished doctoral thesis, Departamento de Geografía y Turismo, Universidad Nacional del SurGoogle Scholar
  40. Mazzoni E (2008) Características fisiográficas de humedales patagónicos de ambientes áridos. Revista Geografia, ensino & pesquisa. Universidade de Santa Maria, Rio Grande do Sul. Brazil. 12(1):2149–2164Google Scholar
  41. Mazzoni E (2010) Humedales de la Patagonia extracordillerana. Técnicas de teledetección para su inventario y evaluación. In: Carbone E, Melo W, Ángeles G (eds) Tecnologías de la Información Geográfica, 1–14. Universidad Nacional del Sur. Bahía BlancaGoogle Scholar
  42. Mazzoni E, Vázquez M (2004) Ecosistemas de mallines y paisajes de la Patagonia Austral. INTA, Buenos Aires, p 63Google Scholar
  43. Mazzoni E, Vázquez M (2009) Desertification in Patagonia. In: Latrubesse E (ed) Geomorphology of natural and human-Induced disasters in South America. developments in Earth surface processes. Elsevier, Amsterdam, pp 351–377Google Scholar
  44. Mazzoni E, Rabassa J (2013) Types and internal hydro-geomorphologic variability of mallines (wet-meadows) of Patagonia: emphasis on volcanic plateaus. J S Am Earth Sci 46:170–182. ElsevierGoogle Scholar
  45. Movia C, Ower G, Pérez C (1982) Estudio de la vegetación natural de la Provincia del Neuquén. Tomo I: Relevamiento. Subsecretaría de Estado de Recursos Naturales. NeuquénGoogle Scholar
  46. Movia C, Soriano A, León RJC (1987) La vegetación de la cuenca del río Santa Cruz (provincia de Santa Cruz, Argentina). Darwiniana 28 (1–4): 9–78. Buenos AiresGoogle Scholar
  47. Ozesmi S, Bauer M (2002) Satellite remote sensing of wetlands. Wetlands Ecol Manage 10:381–402CrossRefGoogle Scholar
  48. Pay SS, Das G, Singh JP, Panigrahy S (2006) Evaluation of hyperspectral indices for LAI estimation and discrimination of potato crop under different irrigation treatments. Int J Remote Sens 27:5373–5387CrossRefGoogle Scholar
  49. Pengra BW, Johnston CA, Loveland TR (2007) Mapping an invasive plant, phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens Environ 108:74–81CrossRefGoogle Scholar
  50. Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392CrossRefGoogle Scholar
  51. Rafaele E (1999) Mallines: aspectos generales y problemas particulares. In: Malvárez A, Bo R (eds) Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO, Montevideo, pp 27–33Google Scholar
  52. Rebelo L, Finlayson C, Nagabhatla N (2009) Remote sensing and GIS for wetland inventory, mapping and change analysis. J Environ Manage 90(2009):2144–2153CrossRefGoogle Scholar
  53. Rendong L, Jiyuan L (2004) Estimating wetland vegetation biomass in the Poyang Lake of central China from Landsat ETM data. IEEE Trans Geosci Remote Sens 4:4590–4593Google Scholar
  54. Richards J (2013) Remote sensing digital image analysis. Springer-Verlag, Berlin HeidelbergCrossRefGoogle Scholar
  55. Rosso PH, Ustin SL, Hastings A (2005) Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. Int J Remote Sens 26:5169–5191CrossRefGoogle Scholar
  56. Rutchey K, Vilchek L (1999) Air photointerpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern Everglades impoundment. Photogram Eng and Remote Sens 65:185–191Google Scholar
  57. Schmidt AM, Piorkowski H, Bartoszuk H (2000) Remote sensing techniques and geographic information systems for wetland conservation and management: monitoring scrub encroachment in Biebrza National Park. Wageningen, Alterra, Green World Research. Alterra-rapport 174Google Scholar
  58. Schmidt KS, Skidmore AK (2003) Spectral discrimination of vegetation types in a coastal wetland. Remote Sens Environ 85:92–108CrossRefGoogle Scholar
  59. Schmidt KS, Skidmore AK, Kloosterman EH, Van Oosten H, Kumar L, Janssen JAM (2004) Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogram Eng and Remote Sens 70:703–716CrossRefGoogle Scholar
  60. Silva T, Costa M, Melack J, Novo E (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140:131–145CrossRefGoogle Scholar
  61. Speck N, Sourrouille E, Wijnhoud S, Munist E, Monteith N, Volkheimer W, Menéndez J (1982) Sistemas Fisiográficos de la Zona Ingeniero Jacobacci—Maquinchao (provincia de Río Negro). Buenos Aires, INTAGoogle Scholar
  62. Thomasson JA, Bennett CW, Jackson BD, Mailander MP (1994) Differentiating bottomland tree species with multispectral videography. Photogram Engr Remote Sens 60(1):55–59Google Scholar
  63. Tiner RW (1990) Use of high-altitude aerial photography for inventorying forested wetlands in the United States. For Ecol Manage 33:593–604CrossRefGoogle Scholar
  64. Tiner RW (1996) Wetlands. In: Manual of photographic interpretation, 2nd edn. falls church, virginia American society for photogrammetry and remote sensing. p 2440Google Scholar
  65. Vaiphasa C, Ongsomwang S, Vaiphasa T, Skidmore AK (2005) Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar Coast Shelf Sci 65:371–379CrossRefGoogle Scholar
  66. Vollmer H, Finkl C, Makowski C (2015) Novel method for interpreting submarine geomorphology from laser airborne depth sounding (LADS) bathymetry using surfer 12 shaded relief maps. J Coast Res 1268–1274Google Scholar
  67. Wang Y, Christiano M, Traber M (2010) Mapping salt marshes in Jamaica Bay and terrestrial vegetation in Fire Island National Seashore using QuickBird satellite data. In: Wang J (ed) Remote Sensing of Coastal Environment. Florida CRC Press, Boca RatonGoogle Scholar
  68. Yang C, Everitt JH, Fletcher RS, Jensen JR, Mausel PW (2009) Mapping black mangrove along the south Texas gulf coast using AISA + hyperspectral imagery. Photogram Eng & Remote Sens 75:425–436CrossRefGoogle Scholar
  69. Yang J, Artigas FJ (2010) Mapping salt marsh vegetation by integrating hyperspectral and LiDAR remote sensing. In: Wang J (ed) Remote Sensing of Coastal Environment. Florida CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Unidad Académica Río GallegosUniversidad Nacional de la Patagonia Austral (UARG – UNPA)Río GallegosArgentina
  2. 2.Laboratorio de GeomorfologíaCADIC-CONICET and Universidad Nacional de Tierra del FuegoUshuaiaArgentina

Personalised recommendations