Advertisement

An Evolutionary Model of Volcanic Landscapes

Chapter
Part of the The Latin American Studies Book Series book series (LASBS)

Abstract

Taking into consideration the different situations observed in the field, this chapter proposes a model of evolution of the Patagonian volcanic landscape developed from the outcrop of basaltic flows. The different geomorphological processes that act upon the evolution of these landscapes are exposed, particularly fluvial erosion and mass movement processes, and the factors that contribute to the modification or interruption of the evolutionary sequence proposed. The term “landscape of lobes and hummocks” is proposed for the final evolutionary stage of these landscapes. The rate of relative elevation of the basaltic mesetas is also estimated.

Keywords

Geomorphological cycle Volcanic tableland landscape Extra-Andean patagonia Denudation rates 

References

  1. Acevedo RD, Rocca MCL, Ponce JF, Stinco SG (2015) Impact Craters in South America. Springer Earth System Sciences Brief Monographs. Springer,102 ppGoogle Scholar
  2. Acevedo RD, Ponce JF, Rocca M, Rabassa J, Corbella H (2009) Bajada del Diablo impact crater-strewn field: the largest crater field in the Southern Hemisphere. Geomorphology 110(3–4):58–67CrossRefGoogle Scholar
  3. Anosov DV (2001) Ergodic theory. In: Hazewinkel M (ed) Encyclopaedia of Mathematics. SpringerGoogle Scholar
  4. Ardolino AA, Franchi M, Remesal M, Salini F (1999) Caminos R (ed) El volcanismo en la Patagonia extrandina. Geología Argentina. Servicio Geológico Nacional Anales 29: 579–612. Buenos AiresGoogle Scholar
  5. Bloom AL (1991) Geomorphology: a systematic analysis of late Cenozoic landforms, 2nd edn. Prentice-Hall, Englewood Cliffs, New Jersey, 482 pGoogle Scholar
  6. Borrello AV (1963) Sobre la geología de las Islas Malvinas. Ediciones Cultura. Ministerio de Educación y Justicia, Buenos AiresGoogle Scholar
  7. Brierley GJ (2010) Landscape memory: the imprint of the past on contemporary landscape forms and processes. Area 42:76–85CrossRefGoogle Scholar
  8. Brown J (1976) Ergodic theory and topological dynamics. Academic Press, New YorkGoogle Scholar
  9. Brunsden D, Thornes JB (1977) Geomorphology and time. Methuen, LondonGoogle Scholar
  10. Coronato A, Ercolano B, Corbella H, Tiberi P (2013) Glacial, fluvial and volcanic landscape evolution in the Laguna Potrok Aike maar area, Southern Patagonia, Argentina. Quatern Sci Rev 71:13–26CrossRefGoogle Scholar
  11. Cruden DM (1990) Suggested nomenclature for a landslide summary. Bull Int Assoc Eng Geol 41:1316Google Scholar
  12. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (Special Report). Washington, DC, USA: National Research Council, Transportation and Research Board Special Report 247, pp 36–75Google Scholar
  13. Davis WM (1923) The scheme of the erosion cycle. J Geol 31:10–25CrossRefGoogle Scholar
  14. D’Elia L, Páez G, Hernando I, Petrinovic I, Villarosa G, Bilmes A, Bodaño M, Guzmán S, Borzi G, Serra Varela S, Manzoni C, Outes V, Delménico A, Balbis C (2014) Erupciones históricas del Volcán Tromen: análisis geomorfológico y geocronológico en su sector noroeste. Revista de la Asociación Geológica Argentina 71(3):444–448. Buenos AiresGoogle Scholar
  15. D’Orazio M, Agostini S, Innocenti F, Haller MJ, Manetti P, Mazzarini F (2001) Slab window related magmatism from southernmost South America: the Late Miocene mafic volcanic from Estancia Glencross Area (52° S, Argentina—Chile). Lithos 57:67–89CrossRefGoogle Scholar
  16. Ferrer J (1982) Recopilación geológica de la Provincia del Neuquén. C.F.I. Unpublished report, Buenos AiresGoogle Scholar
  17. Fryirs K, Brierley GJ, Erskine WD (2012) Use of ergodic reasoning to reconstruct the historical range of variability and evolutionary trajectory of rivers. Earth Surf Proc Land 37:763–773.  https://doi.org/10.1002/esp.3210 CrossRefGoogle Scholar
  18. González Bonorino F (1973) Geología de la región de San Carlos de Bariloche. Publicaciones de la Fundación Bariloche, San Carlos de BarilocheGoogle Scholar
  19. González Díaz EF (2003) El englazamiento en la región de la caldera de Caviahue–Copahue (Provincia del Neuquén): su reinterpretación. Revista de la Asociación Geológica Argentina 53(3):356–366. Buenos AiresGoogle Scholar
  20. González Díaz EF, Costa C, Giaccardi A (2003) El complejo deslizamiento de Ailinco-Cerro Papas-Las Olletas (Departamento Minas, norte del Neuquén, Argentina. Revista de la Asociación Geológica Argentina 58(2):194–200. Buenos AiresGoogle Scholar
  21. Groeber P (1946) Observaciones geológicas a lo largo del meridiano 70º O. Hoja Chos Malal. Revista Asociación Geológica Argentina 1(3):177–208Google Scholar
  22. Haller MJ (2002) La cuenca triásica de El Tranquilo. In: Haller MJ (ed) Geología y recursos naturales de Santa Cruz. Relatorio del XV Congreso Geológico Argentino:83–88Google Scholar
  23. Judson S, Ritter (1964) Rates of regional denudation in the United States. J Geophys 69:3395–3401Google Scholar
  24. Kay SM, Ramos VA, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: Analogy to Middle Proterozoic in North America? Geology 17:324–328. BoulderGoogle Scholar
  25. Leanza H (2011) Mapa geológico de la provincia del Neuquén. Escala 1:500.000. SEGEMAR, Buenos AiresGoogle Scholar
  26. Linares E and González R (1990) Catálogo de edades radimétricas de la República Argentina (1957–1987). Asociación Geológica Argentina, Publicaciones Especiales, serie B Nº 19. Buenos AiresGoogle Scholar
  27. Llambías E, Leanza H, Galland O (2011) Agrupamiento volcánico Tromen-Tilhue. In: Leanza H, Arregui C, Carbone O, Danieli J, Vallés J (eds) Geología y Recursos Naturales de la Provincia de Neuquén. Asociación Geológica Argentina:627–636. NeuquénGoogle Scholar
  28. Marchand D (1971) Rates and modes of denudation, White Mountains, eastern North America. Am J Sci 262:782–794Google Scholar
  29. Mazzoni E (2007) Geomorfología y evolución geomorfológica de paisajes volcánicos y sus mallines asociados en diferentes ambientes de la Patagonia extra-andina. Unpublished doctoral thesis, Universidad Nacional del Sur, Bahía Blanca, ArgentinaGoogle Scholar
  30. Mazzoni E (2011) Mesetas volcánicas de la Patagonia: cartografía geomorfológica del Escorial de Loncopué, Provincia del Neuquén. Actas Primer Seminario Taller de Cartografía Digital, Asociación Argentina de la Ciencia del Suelo, Buenos Aires. Edited as CDGoogle Scholar
  31. Mazzoni E and Rabassa J (2007) Volcanic landscapes of Patagonia: a geomorphological map of the Piedra del Águila volcanic plateau, province of Neuquén, Argentina. Journal of Maps, 311–322. http://www.journalofmaps.com/article_depository/samerica/Mazzoni_Escorial_1175626845.pdf
  32. Meglioli A (1992) Glacial geology of southernmost Patagonia, the Strait of Magellan and Northern Tierra del Fuego. Unpublished PhD dissertation, Lehigh University, Bethlehem, Pennsylvania, USAGoogle Scholar
  33. Ocampo A, Garrido A, Rabassa J, Rocca M, Echaurren JC, Mazzoni E (2005) A possible impact crater in basalt at Meseta de la Barda Negra, Neuquén, Argentina. Abstract, 68th Meteoritical Society Meeting, 12–16 September, 2005. Lunar and Planetary Institute. Gatlinburg, Tennessee, USA. www.lpi.usra.edu/meetings/metsoc2005
  34. Panza JL (1982) Descripción geológica de las Hojas 53e Gobernador Moyano y 54e, Cerro Vanguardia. Servicio Geológico Nacional, 197 p, unpublished technical report. Buenos AiresGoogle Scholar
  35. Panza JL and Marín G (1998) Hoja Geológica 4969-I Gobernador Gregores. Escala 1:250.000, Provincia de Santa Cruz. SEGEMAR. Boletín 211, 77 pGoogle Scholar
  36. Paine DM (1985) ‘Ergodic’ reasoning in geomorphology: time for a review of the term? Prog Phys Geogr 9(1):1–15CrossRefGoogle Scholar
  37. Pedraza Gilsanz J (1996) Geomorfología: principios, métodos y aplicaciones. Rueda. Madrid, 414 ppGoogle Scholar
  38. Petersen K (1990) Ergodic Theory. Cambridge Studies in Advanced Mathematics. Cambridge: Cambridge University PressGoogle Scholar
  39. Phillips JD (1997) Simplexity and the reinvention of equifinality. Geographical Analysis 29(1):1–15CrossRefGoogle Scholar
  40. Rabassa J (1974) Geología superficial de la región de Pilcaniyeu-Comallo, provincia de Río Negro. Unpublished doctoral thesis, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 119 pp. La PlataGoogle Scholar
  41. Rabassa J (1975) Geología de la región de Pilcaniyeu-Comallo, provincia de Río Negro, Argentina. Fundación Bariloche, Publicación Nº 17:1–129. San Carlos de BarilocheGoogle Scholar
  42. Rabassa J (1978) Mapas de valores CN para las zonas 6,7 y 8, Cuencas aluvionales del Neuquén. Instituto Nacional del Agua, Centro Regional Andino, unpublished technical report. MendozaGoogle Scholar
  43. Ramos VA (1999) Las provincias geológicas del territorio argentino. In: Haller M (ed) Geología Regional Argentina, Instituto de Geología y Recursos Minerales, Anales, 29(3):41–96. Buenos AiresGoogle Scholar
  44. Romero A (1975) Informe geológico del relevamiento a escala 1:2000 de la zona embalse Pichi Picún Leufú. Fundación Bariloche—Hidronor SA. Unpublished technical report. NeuquénGoogle Scholar
  45. Schumm SA (1991) To interpret the earth: ten ways to be wrong. Cambridge University Press, Cambridge, p 135Google Scholar
  46. Singer B, Ackert R, Guillou H (2004) 40Ar/39Ar and K–Ar chronology of Pleistocene glaciations in Patagonia. Geol Soc Am Bull 116(2):434–450CrossRefGoogle Scholar
  47. Stochalak J (1974) The classification of slope deposit from engineering geological point of view. In: Anais, International Congress of Engineering Geology, 2:V27, 1–12. IAEG. São Paulo, BrazilGoogle Scholar
  48. Strahler A (1979) Geografía Física. Editorial Omega, BarcelonaGoogle Scholar
  49. Ton-That T, Singer B, Mörner N, Rabassa J (1999) Datación de lavas basálticas por 40Ar/39Ar y geología glacial de la región del Lago Buenos Aires. Revista Asociación Geológica Argentina 54(4):333–352. Buenos AiresGoogle Scholar
  50. Varnes DJ (1978) Slope movement: types and processes. In: Schuster RL and Krizek RJ (eds) Landslides: analysis and control. Special report 176. Transportation Research Board, Commission on Sociotechnical Systems, National Research Council. National Academy of Sciences, Washington, DC. 234 ppGoogle Scholar
  51. Walters P (2000) An introduction to ergodic theory. Springer Science & Business Media, 79Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Unidad Académica Río GallegosUniversidad Nacional de la Patagonia Austral (UARG – UNPA)Río GallegosArgentina
  2. 2.Laboratorio de GeomorfologíaCADIC-CONICET and Universidad Nacional de Tierra del FuegoUshuaiaArgentina

Personalised recommendations