Skip to main content

The Event Horizon of Confinement

  • Chapter
  • First Online:
Extreme States of Matter in Strong Interaction Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 945))

  • 1106 Accesses

Abstract

Color confinement constitutes for quarks and gluons something like an event horizon which they can never cross. Signals transmitted to the outside world from inside such a horizon cannot contain information and must thus be of thermal nature. In this chapter, we consider multihadron production in high energy collisions as the QCD counterpart of Hawking-Unruh radiation, encountered in black holes and for accelerated observers. This is shown to provide a common, “non-kinetic” origin for thermal multihadron production.

God does play dice, but He sometimes throws them where they can’t be seen. Stephen Hawking

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. See e.g., L.Z. Fang, R. Ruffini, Basic Concepts in Relativistic Astrophysics (World Scientific, Singapore, 1983)

    Google Scholar 

  2. E. Recami, P. Castorina, Lett. Nuovo Cim. 15, 347 (1976)

    Article  Google Scholar 

  3. See e.g., R. Alkofer, C.S. Fisher, F.J. Llanes-Estrada, Phys. Lett. B 611, 279 (2005)

    Google Scholar 

  4. A. Salam, J. Strathdee, Phys. Rev. D18, 4596 (1978)

    ADS  Google Scholar 

  5. The Clay Mathematics Institute, Cambridge, MA, has posted a list of Millenium Problems, whose solutions will in each case be awarded with a million dollar prize; problem no. 7 is the proof on color confinement in Yang-Mills Theory

    Google Scholar 

  6. M. Novello et al., Phys. Rev. D 61, 045001 (2000)

    Article  ADS  Google Scholar 

  7. T.D. Lee, in Statistical Mechanics of Quarks and Hadrons, ed. by H. Satz (North Holland Publishing Co., Amsterdam, 1980)

    Google Scholar 

  8. H. Pagels, E.T. Tomboulis, Nucl. Phys. B 143, 453 (1978)

    Article  Google Scholar 

  9. L.B. Abbott, Nucl. Phys. B 185, 189 (1981)

    Article  ADS  Google Scholar 

  10. L. Maiani et al., Nucl. Phys. B 273, 275 (1986)

    Article  ADS  Google Scholar 

  11. P. Castorina, M. Consoli, Phys. Rev. D 35, 3249 (1987)

    Article  ADS  Google Scholar 

  12. D. Kharzeev, J. Raufeisen, nucl-th/0206073

    Google Scholar 

  13. P. Castorina, D. Kharzeev, H. Satz, Eur. Phys. J. C 52, 187 (2007)

    Article  ADS  Google Scholar 

  14. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  15. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  16. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Brout, R. Parentani, Ph. Spindel, Nucl. Phys. B 353, 209 (1991)

    Article  ADS  Google Scholar 

  18. P. Parentani, S. Massar, Phys. Rev. D 55, 3603 (1997)

    Article  ADS  Google Scholar 

  19. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  20. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005)

    Article  ADS  Google Scholar 

  21. Sang Pyo Kim, arXiv:0709.4313 [hep-th] 2007

    Google Scholar 

  22. See e.g. W. Pauli, Relativitätstheorie, in Enzyklopd̈ie der mathematischen Wissenschaften (Teubner Verlag, Leipzig, 1921); English version Theory of Relativity (Pergamon Press, New York, 1958)

    Google Scholar 

  23. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  24. J.S. Bell, Physics 1, 195 (1964)

    Article  Google Scholar 

  25. G. Chapline et al., Int. J. Mod. Phys. A 18, 3587 (2003)

    Article  ADS  Google Scholar 

  26. T.D. Lee, Nucl. Phys. B 264, 437 (1986)

    Article  ADS  Google Scholar 

  27. M.K. Parikh, F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Hosoya, Progr. Theoret. Phys. 61, 280 (1979)

    Article  ADS  Google Scholar 

  29. J.D. Bjorken, Lect. Notes Phys. (Springer) 56, 93 (1976)

    Google Scholar 

  30. A. Casher, H. Neuberger, S. Nussinov, Phys. Rev. D 20, 179 (1979)

    Article  ADS  Google Scholar 

  31. M. Lüscher, G. Münster, P. Weisz, Nucl. Phys. B 180, 1 (1981)

    Article  ADS  Google Scholar 

  32. G. Bali, K. Schilling, C. Schlichter, Phys. Rev. D 51, 5165 (1995)

    Article  ADS  Google Scholar 

  33. V.N. Gribov, arXiv:hep-ph/0006158

    Google Scholar 

  34. D. Kharzeev, K. Tuchin, Nucl. Phys. A 753, 316 (2005)

    Article  ADS  Google Scholar 

  35. D. Kharzeev, Nucl. Phys. A 774, 315 (2006)

    Article  ADS  Google Scholar 

  36. F. Becattini et al., Eur. Phys. J. C 56, 493 (2008)

    Article  ADS  Google Scholar 

  37. W.-M. Yao et al. (2006 Review of Particle Physics), J. Phys. G 33, 1 (2006)

    Article  ADS  Google Scholar 

  38. S. Jacobs, M.G. Olsson, C. Suchyta, Phys. Rev. D 33, 3338 (1986)

    Article  ADS  Google Scholar 

  39. F.J. Yndurain, Theory of Quark and Gluon Interactions (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  40. N. Brambilla et al., CERN Yellow Report CERN-2005-005

    Google Scholar 

  41. C. Aubin et al. (MILC Collaboration), Phys. Rev. D 70, 094505 (2004)

    Google Scholar 

  42. A. Gray et al., Phys. Rev. D 72, 0894507 (2005)

    Google Scholar 

  43. M. Cheng et al., arXiv:hep-lat/0608013

    Google Scholar 

  44. A. Leonidov, H. Satz, Z. Phys. C 74, 535 (1997)

    Google Scholar 

  45. R. Hagedorn, Thermodynamics of Strong Interactions, CERN 71-’-12, 1971

    Google Scholar 

  46. see also R. Stock, Phys. Lett. B 456, 277 (1999) and arXiv:nucl-th/0703050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satz, H. (2018). The Event Horizon of Confinement. In: Extreme States of Matter in Strong Interaction Physics. Lecture Notes in Physics, vol 945. Springer, Cham. https://doi.org/10.1007/978-3-319-71894-1_12

Download citation

Publish with us

Policies and ethics