Skip to main content

Ozone Biomonitoring, Biomass and Yield Response

  • Chapter
  • First Online:
Tropospheric Ozone and its Impacts on Crop Plants

Abstract

The negative consequences of surface ozone on agricultural crops will be an important threat to global food security in coming years. Several approaches have been adopted from time to time to evaluate the harmful effects of O3 on crop plants. The technique of O3 biomonitoring is used to estimate the level of O3 induced injury in plants. The concept of biomonitoring basically applies two methods, either the estimation of foliar injury symptoms or by analyzing the response of plants using specific chemical protectants which act as antiozonants. Biomonitoring programmes provide us with valuable comparative information regarding the O3 concentrations at different sites, such that the impact of ambient O3 is directly measured. The technique is specifically useful in developing countries, where extensive research facilities are not present. Effect of O3 on plant biomass is an important factor contributing towards the yield of the plants. The biomass accumulation and allocation pattern adopted by the plants in response to O3 stress not only determines the yield loss but also specifies the cultivar sensitivity/resistivity towards O3. Different crop loss assessment programmes carried out in different parts of the world have depicted the necessity for further exploring the O3 induced yield losses in coming times. In addition to programmes like NCLAN and EOTC, several individual experiments have also been conducted to evaluate yield losses in different crop plants. In the past few decades, several models like MOZRAT, MOZRAT 2, have been proposed which have predicted the yield losses of different agricultural crops in coming few decades. As per the modeling results, the regions of south and south-east Asia are specifically prone to greater yield reductions and therefore, there is an urgent need to develop extensive crop loss evaluation programmes in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RM, Glyer JD, Johnson SL, McCarl BA (1989) A reassessment of theeconomic effects of ozone on United States agriculture. J Air Pollut Control Assoc 39:960–968

    CAS  Google Scholar 

  • Adrees M, Saleem F, Jabeen F, Rizwan M, Ali S, Khalid S, Ibrahim M, Iqbal N, Abbas F (2016) Effects of ambient gaseous pollutants on photosynthesis, growth, yield and grain quality of selected crops grown at different sites varying in pollution levels. Arch Agronom Sci 62(9):34–47

    Google Scholar 

  • Agathokleous E, Mouzaki-Paxinou A, Saitanis CJ, Paoletti E, ManningWJ (2016a) The first toxicological study of the antiozonant andresearch tool ethylenediurea (EDU) using Lemna minor L. bioassay:hints to its mode of action. Environ Pollut 213:996–1006

    Article  CAS  Google Scholar 

  • Agathokleous E, Saitanis CJ, Stamatelopoulos D, Mouzaki-Paxinou A, Paoletti E, Manning WJ (2016b) Olive oil for dressing plantleaves so as to avoid O3 injury. Water Air Soil Pollut 227:282

    Article  CAS  Google Scholar 

  • Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Shi C, Koike T (2016c) High doses of ethylenediurea (EDU) are not toxic to willowand act as nitrogen fertilizer. Sci Total Environ 566–567:841–850

    Article  CAS  Google Scholar 

  • Agathokleous E, Paoletti E, Saitanis CJ, Manning WJ, Sugai T, Koike T (2016d) Impacts of ethylenediurea (EDU) soil drench and foliar spray in Salix sachalinensis protection against O3 induced injury. Sci Total Environ 573:1053–1062

    Article  CAS  Google Scholar 

  • Agrawal M, Rajput M, Singh RK (2003) Use of ethylenediurea to assess the effects of ambient ozone on Vigna radiata. Int J Biotronics 32:35–48

    Google Scholar 

  • Agrawal SB, Singh A, Rathore D (2004) Assessing the effects of ambient air pollution on growth, biochemical and yield characteristics of three cultivars of wheat (Triticum aestivum L.) with ethylenediurea and ascorbic acid. J Plant Biol 31:165–172

    CAS  Google Scholar 

  • Agrawal SB, Singh A, Rathore D (2005) Role of ethylenediurea (EDU) in assessing impact of ozone on Vigna radiata L. plants in a sub urban area of Allahabad (India). Chemosphere 61:218–228

    Article  CAS  Google Scholar 

  • Agrawal M, Singh B, Agrawal SB, Bell JNB, Marshall F (2006) The effect of air pollution on yield and quality of mung bean grown in peri-urban areas of Varanasi. Water Air Soil Pollut 169:239–254

    Article  CAS  Google Scholar 

  • Ahmed S (2009) Effects of air pollution on yield of mungbean in Lahore, Pakistan. Pak J Bot 41:1013–1021

    Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) Theeffects of tropospheric ozone on net primary productivity and implications forclimate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  Google Scholar 

  • Ainsworth EA (2008) Rice production in changing climate: a meta-analysis of responses to elevated CO2 and elevated ozone concentration. Glob Chang Biol 14:1642–1650

    Article  Google Scholar 

  • Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Izuta T (2010a) Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.) Environ Pollut 158:1763–1767

    Article  CAS  Google Scholar 

  • Akhtar N, Yamaguchi M, Inada H, Hoshino D, Kondo T, Fukami M, Funada R, Izuta T (2010b) Effects of ozone on growth, yield and leaf gas exchange rates of four Bangladeshi cultivars of rice (Oryza sativa L.) Environ Pollut 158:2970–2976

    Article  CAS  Google Scholar 

  • Ali A, Alfarhan A, Robinson E, Bokhari N, Al-Rasheid K, Al-Quraishy S (2008) Tropospheric ozone effects on the productivity of some crops in central Saudi Arabia. Am J Environ Sci 4:631–637

    Article  CAS  Google Scholar 

  • Ariyaphanphitak W (2004) Effects of ground-level ozone on crop productivity in Thailand. The Joint International Conference on “Sustainable Energy and Environment (SEE)” 1–3 December 2004, Hua Hin, Thailand

    Google Scholar 

  • Ariyaphanphitak W, Chidthaisong A, Sarobol E, Bashkin VN, Towprayoon S (2005) Effects of elevated ozone concentrations on Thai jasmine rice cultivars (Oryza sativa L.) Water Air Soil Pollut 167:179–200

    Article  CAS  Google Scholar 

  • Aunan K, Berntsen TK, Seip HM (2000) Surface ozone in China and its possible impact on agricultural crop yields. Ambio 29:294–301

    Article  Google Scholar 

  • Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011a) Global crop yieldreductions due to surface ozone exposure: 2 year 2030 potential cropproduction losses and economic damage under two scenarios of O3 pollution. Atmos Environ 45:2297_2309

    Google Scholar 

  • Avnery S, Mauzerall DL, Liu JF, Horowitz LW (2011b) Global crop yieldreductions due to surface ozone exposure: 1 year 2000 crop production lossesand economic damage. Atmos Environ 45:2284–2296

    Article  CAS  Google Scholar 

  • Bagard M, Le Thiec D, Delacote E, Hasenfratz-Sauder MP, Banvoy J, Gerard J, Dizengremel P, Jolivet Y (2008) Ozoneinducedchanges in photosynthesis and photorespiration ofhybrid poplar in relation to the development stage of the leaves. Physiol Plant 134:559–574

    Article  CAS  Google Scholar 

  • Ball GR, Benton J, Palmer-Brown D, Fuhrer J, Skarby L, Gimeno BS, Mills G (1998) Identifying factors which modify the effect of ambient ozone on white clover (Trifolium repens) in Europe. Environ Pollut 103:7–16

    Article  CAS  Google Scholar 

  • Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    Google Scholar 

  • Bermadinger-Stabentheiner E (1996) Influence of altitude, sampling year and needle age class on stress-physiological reactions of spruce needles investigated onan Alpine altitude profile. J Plant Physiol 148:339–344

    Article  CAS  Google Scholar 

  • Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for US soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol 160:1827–1839

    Article  CAS  Google Scholar 

  • Black VJ, Black CR, Roberts JA, Stewart CA (2000) Impact of ozone on the reproductive development of plants. New Phytol 147:421–447

    Article  CAS  Google Scholar 

  • Black VJ, Stewart CA, Roberts JA, Black CR (2010) Direct effects of ozone on reproductive development in Plantage major L. populations differing in sensitivity. Environ Exp Bot 69:121–128

    Google Scholar 

  • Booker FL, Fiscus EL (2005a) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO2 in soybean. J Exp Bot 56(418):2139–2151

    Article  CAS  Google Scholar 

  • Booker FL, Fiscus EL (2005b) The role of ozone flux and antioxidants in the suppression of ozone injury by elevated CO in soybean. J Exp Bot 56(418):2139–2151

    Article  CAS  Google Scholar 

  • Bou JM, Katerji N, Mastrorilli M, Rana G (2008) Analysis of the ozone effect on soybean in the Mediterranean region II. The consequences on growth, yield and water use efficiency. Eur J Agron 28:519–525

    Article  CAS  Google Scholar 

  • Broberg MC, Feng ZZ, Xin Y, Pleijel H (2015) Ozone effects on wheat grain quality: a summary. Environ Pollut 197:203–213

    Article  CAS  Google Scholar 

  • Brunschon-Harti S, Fangmeir A, Jager HJ (1995) Influence of ozone and ethylenediurea on growth and yield of bean (Phaseolus vulgaris) in open top chambers. Environ Pollut 90:84–94

    Google Scholar 

  • Burney J, Ramanathan V (2014) Recent climate and air pollution impacts on Indian agriculture. Proc Natl Acad Sci U S A 111:16319–16324

    Article  CAS  Google Scholar 

  • Calatayud V, Cerveró J, Sanz MJ (2007) Foliar, physiologial and growth responses of four maple species exposed to ozone. Water Air Soil Pollut 185:239–254

    Article  CAS  Google Scholar 

  • Calvete-Sogo H, Elvira S, Sanz J, Gonzalez-Fernandez I, García-Gomez H, Sanchez-Martín L, Alonso R, Bermejo-Bermejo V (2014) Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmos Environ 95:197–206

    Article  CAS  Google Scholar 

  • Calvo E, Calvo I, Jimenez A, Porcuna JL, Sanz MJ (2009) Using manure to compensate ozone-induced yield loss in potato plants cultivated in the east of Spain. Agric Ecosyst Environ 131:185–192

    Article  CAS  Google Scholar 

  • Carnahan JE, Jennce EL, Wat EKW (1978) Prevention of ozone injury in plants by a new protective chemical. Phytopathology 68:1225–1229

    Article  CAS  Google Scholar 

  • Carriero G, Emiliani G, Giovannelli A, Hoshika Y, Manning WJ, Traversi ML, Paoletti E (2015) Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU). Environ Pollut 206:575–581

    Google Scholar 

  • Chameides WL, Kasibhatla PS, Yienger J, Levy H (1994) Growth of continental-scale metro-agro-plexes, regional ozonepollution, and world food production. Science 264:74–77. https://doi.org/10.1126/science.264.5155.74

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2013) Intraspecific responses of six Indian clover cultivars under ambient and elevated levels of ozone. Environ Sci Pollut Res 20:5318–5329

    Article  CAS  Google Scholar 

  • Chernikova T, Robinson JM, Lee EH, Mulchi CL (2000) Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosynth Res 64:15–26

    Article  CAS  Google Scholar 

  • Collins WJ, Sitch S, Boucher O (2010) How vegetation impacts affect climate metrics for ozone precursors. Geophys Res 115:D23308. https://doi.org/10.1029/2010JD014187

    Article  CAS  Google Scholar 

  • Cooper OR, Parrish DD, Ziemke J, Balashov NV, Cupeiro M, GalballyIE GS et al (2014) Global distribution and trends of troposphericozone: an observation-based review. Elem Sci Anth 2:000029

    Article  Google Scholar 

  • Cotrozzi L, Remorini D, Pellegrini E, Landi M, Massai R, Nali C, Guidi L, Lorenzini G (2016) Variations in physiological and biochemical traits of oak seedlings grown under drought and ozone stress. Physiol Plant 157:69–84

    Article  CAS  Google Scholar 

  • Coulston JW (2011) Modeling ozone bioindicator injury with micro scale and landscape-scale explanatory variables:A logistic regression approach. chapter 6. In: Conkling BL (ed) Forest health monitoring 2007 nationaltechnical report. Gen. Tech. Rep. SRS-XXX. US Department of Agriculture, Forest Service, Southern Research Station, Asheville, p 13

    Google Scholar 

  • Cuny D, Davranche L, Van Haluwyn C, Plaisance H, Caron B, Malrieu V (2004) Monitoring ozone by usingtobacco, automated network and passive samplers in an industrial area in France. In: Klumpp A, Ansel W, Klumpp G (eds) Urban air pollution, bioindication and environmental awareness. Cuvillier, Go¨ ttingen, pp 97–108

    Google Scholar 

  • Danh NT, Huy LH, Oanh NTK (2016) Assessment of rice yield loss due to exposure to ozone pollution in Southern Vietnam. Sci Total Environ 566-567:1069–1079

    Article  CAS  Google Scholar 

  • Danielsson H (2003) Exposure, uptake and effects of ozone. Doctoral Thesis, Göteborg University, Department of Applied Environmental Science

    Google Scholar 

  • Debaje SB (2014) Estimated crop yield losses due to surface ozone exposure and economic damage in India. Environ Sci Pollut Res 21:7329–7338. https://doi.org/10.1007/s11356-014-2657-6

    Article  CAS  Google Scholar 

  • De Temmerman L, Legrand G, Vandermeiren K (2007) Effects of ozone on sugar beet grown in Open-Top Chambers. Eur J Agron 26:1–9

    Article  CAS  Google Scholar 

  • Dentener F, Stevenson D, Ellingsen K, Van Noije T, Schultz M et al (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594

    Article  CAS  Google Scholar 

  • Deneter F, Stevenson D, Ellingsen K, Van Noije T, Schultz M, Amann M, Atherton C, Bell N, Bergmann D, Bey I, Bouwman L, Butler T, Cofala J, Collins B, Drevet J, Doherty R, Eickhout B, Eskes H, Fiore A, Gauss M, Hauglustaine D, Horowitz L, Isaken ISA, Josse B, Lawrence M, Krol M, Lamarque JF, Montanaro V, Muller J-F, Peuch VH, Pitari G, Pyle J, Rast S, Rodriguez J, Sanderson M, Savage NH, Shindell D, Stahan S, Szopa S, Sudo K, Van Dingenen R, Wild O, Zeng G (2006) The global atmospheric environment for the next generation. Environ Sci Technol 40:3586–3594

    Google Scholar 

  • Drogoudi PD, Ashmore MR (2002) Effects of elevated ozone on yield and carbon allocation in strawberry cultivars differing in developmental stage. Phyton-Annales Rei Botanicae 42:45–53

    CAS  Google Scholar 

  • EANET (2006) Data Report on the Acid Deposition in the East Asian Region 2005. Network Centre of EANET, Japan. Available from: http://www.eanet.cc/

    Google Scholar 

  • Elagoz V, Manning WJ (2005) Responses of sensitive and tolerant bush beans (Phaseolus vulgaris L.) to ozone in open-top chambers are influenced by phenotypic difference, morphological characteristics and chamber environment. Environ Pollut 135:371–383

    Article  CAS  Google Scholar 

  • Emberson LD, Bu¨ ker P, Ashmore MR, Mills G, Jackson LS, Agrawal M, Atikuzzaman MD, Cinderby S, Engardt M, Jamir C, Kobayashi K, Oanh NTK, Quadir QF, Wahid AA (2009) comparison of North American and Asian exposure–response data for ozone effects on crop yields. Atmos Environ 43:1945–1953

    Article  CAS  Google Scholar 

  • Ensing J, Hofstra G, Roy RC (1985) The impact of ozone on peanut exposed in the laboratory and field. Phytopathology 75:429–432

    Article  CAS  Google Scholar 

  • ENVIRON (2011) User’s Guide: Comprehensive Air Quality Model with Extensions (CAMx). ENVIRON I

    Google Scholar 

  • EPA, Environmental Protection Agency (1996) Air Quality Criteria for Ozone andRelated Photochemical Oxidants. United States Environmental ProtectionAgency, Washington, DC, pp 1-1e1–1-133

    Google Scholar 

  • EU European Union (2001) Directive 2001/81/EC of theEuropean parliament and the council on national emissionceilings for certain atmospheric pollutants. Off J Euro Commun L 309:22–30

    Google Scholar 

  • EU European Union (2002) Directive 2002/3/EC of the Europeanparliament and of the council relating to ozone in ambient air. Off J Euro Commun L 67:14–30

    Google Scholar 

  • FAO (2012) Agricultural production and natural resource use. In: Alexandratos N, Bruinsma J (eds) World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03. FAO, Rome, pp 94–133

    Google Scholar 

  • FAO (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 international hunger targets: taking stock of uneven progress. FAO, Rome, Italy

    Google Scholar 

  • Feng ZW, Jin MH, Zhang FZ, Huang YZ (2003) Effects of ground-level ozone (O ) pollution on the yields of rice and winter wheat in the Yangtze River Delta. J Environ Sci (China) 15:360–362

    CAS  Google Scholar 

  • Feng Z, Kobayashi K (2009) Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta analysis. Atmos Environ 43:1510–1519

    Article  CAS  Google Scholar 

  • Feng Z, Wang S, Szantoi Z, Chen S, Wang X (2010) Protection of plants fromambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environ Pollut 158:3236–3242

    Article  CAS  Google Scholar 

  • Feng Z et al (2014) Evidence of widespread ozone-induced visible injury on plants in Beijing, China. Environ Pollut 193:296–301

    Article  CAS  Google Scholar 

  • Feng Z, Hu E, Wang X, Jiang L, Liu X (2015) Ground-level O3 pollution and its impacts on food crops in China: A Review. Environ Pollut 199:42–48

    Article  CAS  Google Scholar 

  • Finnan JM, Jones MB, Burke JL (1996) A time- concentration study on the effects of ozone on spring wheat (Triticum aestivum L.). 1. Effects on yield. Agric Ecosyst Environ 57:159–167

    Article  CAS  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Fuhrer J, Booker FL (2003) Ecological issues related to ozone:agricultural issues. Environ Int 29:141–154

    Article  CAS  Google Scholar 

  • Fuhrer J, Grandjean Grimm A, Tschannen W, Shariat-Madari H (1992) The response of spring wheat (Triticum aestivum L.) to ozone at higher elevations. II. Changes in yield, yield components and grain quality in response to ozone flux. New Phytol 121:211–219

    Article  CAS  Google Scholar 

  • Fumagalli I, Mignanego L, Mills G (2003) Ozone biomonitoring with clover clones: yield loss and carryover effect under high ambient ozone levels in northern Italy. Agric Ecosyst Environ 95:119–128

    Article  CAS  Google Scholar 

  • Gelang J, Pleijel H, Sild E, Danielsson H, Younis S, Selldén G (2000) Rate and duration of grain filling in relation to flagleaf senescence and grain yield in spring wheat (Triticum aestivum)exposed to different concentrations of ozone. Physiol Plant 110:366–375

    Article  CAS  Google Scholar 

  • Gerosa G, Marzuoli R, Rossini M, Panigada C, Meroni M, Colombo R, Faoro F, Iriti M (2009) A flux-based assessment of the effects of ozone on foliar injury, photosynthesis, and yield of bean (Phaseolus vulgaris L. cv. Borlotto Nano Lingua di Fuoco) in open-top chambers. Environ Pollut 157:1727–1736

    Article  CAS  Google Scholar 

  • Gerosa G, Fusaro L, Monga R, Finco A, Fares S, Manes F, Marzuoli R (2015) A flux-based assessment of above and below ground biomass of Holm oak (Quercus ilex L.) seedlings after one season of exposure to high ozone concentrations. Atmos Environ 113: 41–49

    Google Scholar 

  • Ghude SD, Jena C, Chate DM, Beig G, Pfister GG, Kumar R, Ramanathan V (2014) Reductions in India’s crop yield due to ozone. Geophys Res Lett 41:GL060930. https://doi.org/10.1002/2014gl060930

    Article  Google Scholar 

  • Gillespie KM, Xu FX, Richter KT et al (2012) Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O under both ambient and elevated CO. Plant Cell Environ 35:169–184

    Article  CAS  Google Scholar 

  • Gillespie C, Stabler D, Tallentire E, Goumenaki E, Barnes J (2015) Exposure to environmentally-relevant levels of ozone negatively influence pollen and fruit development. Environ Pollut 206:494–501

    Google Scholar 

  • Godzik B, Manning WJ (1998) Relative effectiveness of ethylenediurea and constituents amount of urea and phenylurea in EDU, in prevention of ozone injury to tobacco. Environ Pollut 103:1–6

    Article  CAS  Google Scholar 

  • Gottardinia E, Cristoforia A, Cristofolinia F, Nalib C, Pellegrinib E, Bussottic F, Ferretti M (2014) Chlorophyll-related indicators are linked to visible ozone symptoms: evidence from a field study on native Viburnum lantana L. plants innorthern Italy. Ecol Indic 39:65–74

    Article  CAS  Google Scholar 

  • Grantz DA, Yang S (2000) Ozone impacts on allometry and root hydraulic conductance are not mediated by source limitation nor developmental age. J Exp Bot 51:919–927

    Article  CAS  Google Scholar 

  • Hassan IA (2006) Physiological and biochemical responses of potato (Solanum tuberosum L. v. Kara) to ozone and antioxidant enzymes. Ann Appl Biol 148:197–206

    Article  CAS  Google Scholar 

  • Hassan IA, Tewfik I (2006) CO photoassimilation, chlorophyll fluorescence, lipid peroxidation and yield in cotton (Gossypium hirsutum L. cv Giza 65) in response to O. World Rev Sci Technol Sustainable Dev 3(1):70–79

    Article  Google Scholar 

  • Hassan IA, Ashmore MR, Bell JNB (1995) Effects of ozone on radish and turnip under Egyptian field conditions. Environ Pollut 89:107–114

    Article  CAS  Google Scholar 

  • Hassan IA, Bell JNB, Marshall FM (2007) Effects of air filtration on Egyptian clover (Trifolium alexandrium L. cv. Messkawy) grown in open top chambers in a rural site in Egypt. Res J Biol Sci 2(4):395–402

    Google Scholar 

  • Hayes F, Jones MLM, Mills G, Ashmore M (2007) Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environ Pollut 146:754–762. https://doi.org/10.1016/j.envpol.2006.06.011

    Article  CAS  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Annu Rev Phytopathol 27:397–423

    Article  CAS  Google Scholar 

  • Heck WW (1989) Assessment of crop losses from air pollutants in the UnitedStates. In: MacKenzie JJ, El-Ashry MT (eds) Air pollution’s toll on forests and crops. Yale University Press, New Haven, pp 235–315

    Google Scholar 

  • Heck WW, Taylor OC, Tingey DT (eds) (1988) Assessment of crop loss from air pollutants. Elsevier Appl. Sci, London

    Google Scholar 

  • Horowitz LW et al (2007) Observational constraints on the chemistry of isoprenenitrates over the eastern United States. J Geophys Res 112:D12S08. https://doi.org/10.1029/2006JD007747

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2013) Model-basedanalysis of avoidance of ozone stress by stomatal closure in58 siebold’s beech (Fagus crenata). Ann Bot 112:1149–1158

    Article  CAS  Google Scholar 

  • Innes JL, Skelly JM, Schaub M (2001) Ozone and broadleaved species. A guide to the identification of ozone-induced foliar injury. Paul Haupt Publishing, Bern/Switzerland. ISBN 3-258-06384-2, p 136

    Google Scholar 

  • IPCC: Climate Change (2013) In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Ishii S, Marshall FM, Bell JNB, Abdullah AM (2004) Impact of ambient air pollution on locally grown rice cultivars (Oryza sativa L.) in Malaysia. Water Air Soil Pollut 154:187–201

    Article  CAS  Google Scholar 

  • Ismail M, Suroto A, Abdullah S (2015) Response of Malaysian Local Rice Cultivars Induced by Elevated Ozone Stress. Environment Asia 8(1):86–93

    Google Scholar 

  • Islam MT, Ashraf MA, Sattar MA (2007) Bio-monitoring study on tropospheric ozone using white clover at Bangladesh Agricultural University farming area. Progress Agric 18(2):215–222. ISSN 1017–8139

    Google Scholar 

  • Kafiatullah AW, Ahmad SS, SRA S (2012) Ozone Biomonitoring in Pakistan using tobacco cultivar Bel-W3. Pak J Bot 44(2):717–723

    Google Scholar 

  • Kharel K, Amgain LP (2010) Assessing the impact of ambient ozone on growth and yield of crop at Rampur, Chitwan. J Agri Environ 11:40–45

    Google Scholar 

  • Klumpp A, Ansel W, Klumpp G, Vergne P, Sifakis N, Sanz MJ, Rasmussen S, Ro-Poulsen H, Ribas A, Penuelas J et al (2006) Ozone pollution and ozone biomonitoring inEuropean cities Part II. Ozone-induced plant injury and its relationship withdescriptors of ozone pollution. Atmos Environ 40(38):7437–7448

    Article  CAS  Google Scholar 

  • Köllner B, Krause GHM (2000) Changes in carbohydrate, leaf pigments and yield in potatoes induced by different ozone exposure regimes. Agric Ecosyst Environ 78:149–158

    Article  Google Scholar 

  • Kohut R (2005) Handbook for the assessment of foliar ozoneinjury on vegetation in the National Parks. http://www2.nature.nps.gov/air/permits/aris/networks/index.cfm

  • Kostka-Rick R (2002) Ozone biomonitoring in a local networkaround an automotive plant. In: Klumpp A, Fomin A, Klumpp G, Ansel W (eds) Bioindication and Air Quality in European Cities—Research, Application, Communication. Heimbach, Stuttgart, pp 243–248

    Google Scholar 

  • Kumari S, Agrawal M, Tiwari S (2013) Impact of elevated CO2 and elevated O3 on Beta vulgaris L.: pigments, metabolites, antioxidants, growth and yield. Environ Pollut 174:279–288

    Article  CAS  Google Scholar 

  • Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozoneon plant reproductive growth and development. Glob Chang Biol 18:606–616

    Article  Google Scholar 

  • Lesser VM, Rawlings JO, Spruill SE, Somerville MC (1990) Ozone effects on agricultural crops: statistical methodologies and estimated dose response relationships. Crop Sci 30:148–155

    Article  CAS  Google Scholar 

  • Li C, Meng J, Guo L, Jiang G (2016) Effects of ozone pollution on yield and quality of winter wheat under flixweed competition. Environ Exp Bot 129:77–84

    Article  CAS  Google Scholar 

  • Long S, Ainsworth E, Leakey A, Morgan P (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos Trans R Soc B: Biol Sci 360:2011–2020

    Article  Google Scholar 

  • LRTAP (2004) Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. International Cooperative Programme on Mapping and Modelling under the UNECE Convention on Long-Range Transboundary Air Pollution. http://www.icpmapping.org

  • Matoušková L, Novotný R, Hůnová I, Buriánek V (2010) Visible foliar injury as a tool for the assessment of surface ozone impact on native vegetation: a case study from the Jizerské hory Mts. J For Sci 56(4):177–182

    Article  Google Scholar 

  • Mauzerall DL, Wang X (2001) PROTECTING AGRICULTURAL CROPS FROM THE EFFECTS OF TROPOSPHERIC OZONE EXPOSURE: Reconciling Science and Standard Setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237–268

    Article  Google Scholar 

  • Manning WJ, Paoletti E, Sandermann H Jr, Ernst D (2011) Ethylenediurea (EDU): a research tool for assessment and verificationof the effects of ground level ozone on plants under natural condition. Environ Pollut 159:3283–3293

    Article  CAS  Google Scholar 

  • McGrath JM, Betzelberger AM, Wang S, Shook E, Zhu X-G, Long SP, Ainsworth EA (2015) An analysis of ozone damage to historical maize and soybean yields in the United States. PNAS 112(46):14390–14395

    Article  CAS  Google Scholar 

  • Meyer U, Kollner B, Willenbrink J, Krause GHM (2000) Effects of different ozone exposure regimes on photosynthesis, assimilates and thousand grain weight in spring wheat. Agric Ecosyst Environ 78(1):49–55

    Article  CAS  Google Scholar 

  • Michel A, Seidling W (eds) (2016) Forest Condition in Europe: 2016 Technical Report of ICP Forests. Report under the UNECE Convention on Long-Range Transboundary Air Pollution (CLRTAP). BFWDokumentation 23/2016. Vienna: BFW Austrian Research Centre for Forests, p 206

    Google Scholar 

  • Middleton T (1956) Response of plants to air pollution. J Air Pollut Control Assoc 6(1):7–50

    Article  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007a) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643. https://doi.org/10.1016/j.atmosenv.2006.11.016

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Jones MLM, Cinderby S (2007b) Identifying ozone-sensitive communities of (semi-)natural vegetation suitable for mapping exceedance of critical levels. Environ Pollut 146:736–743. https://doi.org/10.1016/j.envpol.2006.04.005

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, BüKer P (2011) Evidence of widespread effects of ozone on crops and (semi-)natural vegetationin Europe (1990-2006) in relation to AOT40- and flux-based risk maps. Glob Change Biol 17:592–613

    Article  Google Scholar 

  • Mills G, Harmens H, Wagg S, Sharps K, Hayes F, Fowler D, Sutton M, Davies B (2016) Ozone impacts on vegetation in a nitrogen enriched and changing climate. Environ Pollut 208 (898–908

    Article  CAS  Google Scholar 

  • Mina U, Kumar P, Varshney C (2010) Effect of ozone exposure on growth, yield and isoprene emission from tomato (Lycopersicon esculentum L.) plants. Veg Crops Res Bull 72:35–48

    CAS  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Differential response of dwarf and tall tropical wheat cultivars to elevated ozone with and without carbon dioxide enrichment: growth, yield and grain quality. Field Crop Res 145:21–32

    Article  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Morgan PB, Mies TA, Bollero GA, Nelson RL, Long SP (2006) Season-longelevation of ozone concentration to projected 2050 levels under fully open-airconditions substantially decreases the growth and production of soybean. New Phytol 170:333–343

    Article  Google Scholar 

  • Nakicenovic N, Alcamo J, Davis G, de Vries B, Fenhann J, Gaffin S, Gregory K, Grubler A, Jung TY, Kram T, La Rovere EL, Michaelis L, Mori S, Morita T, Pepper W, Pitcher HM, Price L, Riahi K, Roehrl A, Rogner H-H, Sankovski A, Schlesinger M, Shukla P, Smith SJ, Swart R, van Rooijen S, Victor N, Dadi Z (2000) Emissions Scenarios: a Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York, p 599

    Google Scholar 

  • Ollerenshaw JH, Lyons T (1999) Impacts of ozone on growth field grown winter wheat. Environ Pollut 106:67–72

    Article  CAS  Google Scholar 

  • Ollerenshaw JH, Lyons T, Barnes JD (1999) Impacts of ozone on the growth and yield of field-grown winter oilseed rape. Environ Pollut 104:171–179

    Article  Google Scholar 

  • Osborne SA, Mills G, Hayes F, Ainsworth EA, Buker P, Embersen L (2016) Has the sensitivity of soybean cultivars to ozone pollution increased with time? An analysis of published dose– response data. Glob Chang Biol 22:3097–3111

    Article  Google Scholar 

  • Pandey AK, Majumder B, Keski-Saari S, Kontunen-Soppela S, Pandey V, Oksanen E (2014) Differences in responses of two mustardgenotypes to ethylenediurea (EDU) at high ambient ozone concentrations in India. Agric Ecosyst Environ 196:158–166

    Article  CAS  Google Scholar 

  • Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  CAS  Google Scholar 

  • Pasqualini S, Paoletti E, Cruciani G, Pellegrino R, Ederli L (2016) Effects of different routes of application on ethylenediurea persistence in tobacco leaves. Environ Pollut 212:559–564

    Article  CAS  Google Scholar 

  • Paoletti E, Manning WJ, Spaziani F, Tagliaferro F (2007a) Gravitational infusion of ethylenediurea into trunks protected adult European ash tree (Fraxinus excelsior L.) from foliar ozone injury. Environ Pollut 145:869–873

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Tagliaferro F (2007b) Ethylenediurea affects the growth of ozone sensitive and tolerantash (Fraxinus excelsior) trees under ambient ozone conditions. Sci World J 7(S1):128–133

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Castagna A, Ranieri A, Tagliaferro F (2008) Protection of ash (Fraxinus excelsior L.) trees from ozoneinjury by ethylenediurea (EDU): roles of biochemical changes anddecreased stomatal conductance in enhancement of growth. Environ Pollut 155:464–472

    Article  CAS  Google Scholar 

  • Paoletti E, Contran N, Manning WJ, Ferrara AM (2009) Use of the antiozonant ethylenediurea (EDU) in Italy: verification of the effectsof ambient ozone on crop plants and trees and investigation of EDU’s mode of action. Environ Pollut 157:1453–1460

    Article  CAS  Google Scholar 

  • Paoletti E, Castagna A, Ederli L, Pasqualini S, Ranieri A, Manning WJ (2014) Gene expression in snapbeans exposed to O3 and protectedby ethylenediurea. Environ Pollut 193:1–5

    Article  CAS  Google Scholar 

  • Persson K, Danielsson H, Sellden G et al (2003) The effects of tropospheric ozone and elevated carbon dioxide on potato (Solanum tuberosum L. cv. Bintje) growth and yield. In: Detecting Environmental Change – Science and Society Conference. Elsevier Science Bv, London, pp 191–201

    Google Scholar 

  • Piikki K, Sellden G, Pleijel H (2004) The impact of tropospheric O3 on leaf number duration and tuber yield of the potato (Solanum tuberosum. L.) cultivars Bintje and Kardal. Agric Ecosyst Environ 104:483–492

    Article  CAS  Google Scholar 

  • Pleijel H, Norberg PA, Sellden G, Skarby L (1999) Tropospheric ozone decreases biomass production in radish plants (Raphnus sativus) grown in rural South West Sweden. Environ Pollut 106:143–147

    Article  CAS  Google Scholar 

  • Pleijel H, Skärby L, Wallin G, Selldén G (1995) A process oriented explanation of the non-linear relationship between grain yield of wheat and ozone exposure. New Phytol 131:241–246

    Article  CAS  Google Scholar 

  • Pleijel H, Danielsson H, Gelang J, Sild E, Sellde’n G. (1998) Growth stage dependence of the grain yield response to ozone in springwheat (Triticum aestivum L.). Agriculture. Ecosyst Environ 70:61–68

    Article  CAS  Google Scholar 

  • Pleijel H, Danielsson H, Ojanperä K, Temmerman LD, Högy P, Badiani M, Karlsson PE (2004) Relationships between ozone exposure and yield loss in European wheatand potato-a comparison of concentration- and flux-based exposure indices. Atmos Environ 38:2259–2269

    Article  CAS  Google Scholar 

  • Pleijel H, Danielsson H, Simpson D, Mills G (2014) Have ozone effects on carbon sequestration been overestimated? A new biomass response function for wheat. Biogeosciences 11:4521–4528. https://doi.org/10.5194/bg-11-4521-2014

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Reid CD, Fiscus EL (2008) Ozone and density affect the response of biomass and seed yield to elevated CO2 in rice. Glob Chang Biol 14:60–76

    Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at rural site in India. Sci Total Environ 407:679–691

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O3 at different developmental stages. Environ Sci Pollut Res 21:1039–1053

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Choudhary KK, Agrawal S, Emberson L, Büker P (2015) Application of ethylene diurea (EDU) inassessing the response of a tropical soybean cultivar to ambient O3: Nitrogen metabolism, antioxidants, reproductive development and yield. Ecotoxicol Environ Saf 112:29–38

    Article  CAS  Google Scholar 

  • Reidmiller DR et al (2009) The influence of foreign vs. North Americanemissions on surface ozone in the U.S. Atmos Chem Phys 9:5027–5042

    Article  CAS  Google Scholar 

  • Ribas A, Peñuelas J (2002) Ozone bioindication in Barcelonaand surrounding area of Catalonia. In: Klumpp A, Fomin A, Klumpp G, Ansel W (eds) Bioindication and Air Quality in European Cities—Research, Application, Communication. Heimbach, Stuttgart, pp 221–225

    Google Scholar 

  • Ribas A, Peñuelas J (2003) Biomonitoring of tropospheric ozone phytotoxicity in rural Catalonia. Atmos Environ 37:63–71

    Article  CAS  Google Scholar 

  • Richards BL, Middleton JT, Hewitt WB (1958) Air pollution with reference to agronomic crops. Agron J 50:559–561

    Article  CAS  Google Scholar 

  • Sanz MJ, Calatayud V (2011) Ozone Injury in European Forest Species. http://ozoneinjury.org

  • Sanz MJ, Calatayud V (2013) Ozone injury in European forest species. Accessed 04.12.13. http://www.ozoneinjury.org/

  • Sanz J, Gonzales I, Calvete-Sogo H, Bermejo V (2014) Ozone and nitrogen effects on yield and nutritive quality of the annual legume Trifolium cherleri. Atmos Environ 94:765–772

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Elevated ozone and two modern wheat cultivars: an assessment of dose dependent sensitivity with respect to growth, reproductive and yield parameter. Environ Exp Bot 69:328–337

    Article  CAS  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmed A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxiocol Environ Saf 115:101–111

    Article  CAS  Google Scholar 

  • Sarkar A, Datta S, Singh P (2017) Tropospheric ozone pollution, agriculture, and food security. In: Singh RP, Singh A, Srivastava V (eds) Environmental issues surrounding human overpopulation. IGI Global, Hershey, pp 234–252

    Google Scholar 

  • Schenone G, Lorenzini G (1992) Effects of regional air pollution on crops in Italy. Agric Ecosyst Environ 38:51–59

    Article  CAS  Google Scholar 

  • Schaub M, Calatayud V (2013) Assessment of visible foliar injury induced by ozone. In: Ferretti M, Fisher R (eds) Forest monitoring, methods for terrestrial investigations in Europe with an overview of North America and Asia, developments in environmental science 12. Elsevier, Oxford, pp 205–221

    Chapter  Google Scholar 

  • Schaub M, Calatayud V, Ferreti M, Brunialti G, L€ovblad G, Krause G, Sanz MJ (2010) Assessment of ozone injury. Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Co-ordinatingCentre, Hamburg, p 1e22. Available at: http://icp-forests.net/

    Google Scholar 

  • Scheepers CCW, Strasser RJ, Krüger GHJ (2013) Effect of Ozone on Photosynthesis and Seed Yield of Sensitive (S156) and Resistant (R123) Phaseolus Vulgaris L. enotypes in Open-Top Chambers. In: Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg

    Google Scholar 

  • Seiler LS (2012) Effectiveness of Ailanthus altissima as a Bioindicator of OzonePollution (M.S. thesis). The Pennsylvania State University

    Google Scholar 

  • Seinfeld JH, Pandis SN (2012) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley and Sons, New York

    Google Scholar 

  • Shi G, Yang L, Wang Y, Kobayashi K, Zhu J, Tang H, Pan S, Chen T, Liu G, Wang Y (2009) Impact of elevated ozone concentration on yield of four Chinese rice cultivars under fully open-air field conditions. Agric Ecosyst Environ 131:178–184

    Article  CAS  Google Scholar 

  • Simpson D, Emberson L, Ashmore M, Tuovinen J-P (2007) A comparison of two different approaches for mapping potential ozone damage to vegetation. A model study. Environ Pollut 146:715–725

    Article  CAS  Google Scholar 

  • Singh AA, Singh S, Agrawal M, Agrawal SB (2015) Assessment of Ethylene Diurea-Induced Protection in Plants Against OzonePhytotoxicity. Rev Environ Contam Toxicol 233:129–184

    CAS  Google Scholar 

  • Singh S, Agrawal SB (2009) Use of ethylenediurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.) Environ Monit Assess 159:125–141

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011a) Cultivar specific response of soybean (Glycine max L.) to ambient and elevated concentrations of ozone under open top chambers. Water Air Soil Pollut 217:283–302

    Article  CAS  Google Scholar 

  • Singh S, Agrawal SB (2011b) Ambient ozone and two black gram cultivars: an assessment of amelioration by use of ethylenediurea. Acta Physiol Plant 33(6):2399–2411

    Article  CAS  Google Scholar 

  • Singh P, Agrawal M, Agrawal SB (2009) Evaluation of physiological growth and yield responses of a tropical oil crop (Brassica campestris L. var. Kranti) under ambient ozone pollution at varying NPK levels. Environ Pollut 157:871–880

    Article  CAS  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135:168–177

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    Article  CAS  Google Scholar 

  • Sinha B, Singh SK, Maurya Y, Kumar V, Sarkar C, Chandra BP, Sinha V (2015) Assessmentof crop yield losses in Punjab and Haryana using 2 years of continuous insitu ozone measurements. Atmos Chem Phys 15:9555–9576

    Article  CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect forcing of climate change through ozone effects on the land carbon sink. Nature 448:791–793

    Article  CAS  Google Scholar 

  • Smith G (2012) Ambient ozone injury to forest plants in Northeast and NorthCentral USA: 16 years of biomonitoring. Environ Monit Assess 184:4049–4065

    Article  CAS  Google Scholar 

  • Smith GC, Coulston JW, O’Connell BM (2008) Ozone bioindicators and forest health: A guide to the evaluation, analysis, and interpretation of ozone injury data in the Forest Inventory and Analysis Program. Gen. Tech. Rep.NRS-34. Newtown Square, PA: US Department of Agriculture. Forest Service, Northern Research Station, p 34

    Google Scholar 

  • Tang H, Takigawa M, Liu G, Zhu J, Kobayashi k (2013) A projection ofozone-induced wheat production loss in China and India for theyears 2000 and 2020 with exposure-based and flux-based approaches.Glob. Chang Biol 19(9):2739–2752

    Article  Google Scholar 

  • Taia W, Basahi J, Hassan I (2013) Impact of ambient air on physiology, pollen tube growth, pollen germination and yield of pepper (Capsicum annum L.) Pak J Bot 45(3):921–923

    Google Scholar 

  • Thanacharoenchanaphas K, Rugchati O (2010) Adverse effects of elevated ambient ozone on yield and protein loss of three Thai soybean cultivars. Int J Environ Rural Dev 1–2:12–17

    Google Scholar 

  • Tiwari S (2017) Ethylenediurea as a potential tool in evaluating ozonephytotoxicity: a review study on physiological, biochemical and morphological responses of plants. Environ Sci Pollut Res 24:14019–14039. https://doi.org/10.1007/s11356-017-8859-y

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2009) Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): Roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere 75:1492–1499

    Google Scholar 

  • Tiwari S, Agrawal M (2010) Effectiveness of different EDU concentrations in ameliorating ozone stress in carrot plants. Ecotoxicol Environ Saf 73(5):1018–1027

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2011) Evaluation of effect of ambient air pollutants on morphological characteristics and nutrient contents of radish plants grown in open top chambers. Environmental pollution: a threat to living world. Jaspal Prakashan, Patna, pp 32–36

    Google Scholar 

  • Tiwari S, Agrawal M, Manning WJ (2005) Assessing the impacts of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of applications of ethylenediurea (EDU). Environ Pollut 138:153–160

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Marshall F (2006) Evaluation of ambient airpollution impact on carrot plants at a suburban site using open topchamber. Environ Monit Assess 266:15–30

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Marshal FM (2010) Seasonal variations in adaptational strategies of Beta vulgaris L. plants in response to ambient air pollution: Biomass allocation, yield and nutritional quality. Trop Ecol 51(2S):353–363

    CAS  Google Scholar 

  • Thwe AA, Vercambre G, Gautier H, Gay F, Phattaralerphong J, Kasemsap P (2014) Response of photosynthesis and chlorophyll fluorescence to acute ozone stress in tomato (Solanumlycopersicum Mill.) Photosynthetica 52:105–116

    Article  CAS  Google Scholar 

  • Tomer R, Bhatia A, Kumar V, Kumar A, Singh R, Singh B, Singh SD (2015) Impact of elevated ozone on growth, yield and nutritional quality of two wheat species in Northern India. Aerosol Air Qual Res 15:329–340

    CAS  Google Scholar 

  • Tong D, Mathur R, Schere K, Kang D, Yu S (2007) The use of air quality forecasts to assess impacts of air pollution on crops: methodology and case study. Atmos Environ 41:8772–8784

    Article  CAS  Google Scholar 

  • Tonneijk AEG, van Dijk CJ (1997) Assessing effects of ambient ozone on injury and growth of Trifolium subterraneum at four rural sites in Netherlands with ethylenediure (EDU). Agric Ecosyst Environ 65:79–88

    Article  Google Scholar 

  • Tripathi R, Agrawal SB (2012) Effects of ambient and elevated level of ozone on Brassica campestris L. with special reference to yield and oil quality parameters. Ecotoxicol Environ Saf 85:1–12

    Article  CAS  Google Scholar 

  • Tripathi R, Agrawal SB (2013) Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers. J Sci Food Agric 93:1016–1025

    Article  CAS  Google Scholar 

  • UNECE (1999) Air pollution and vegetation. Annual Report 1998/1999. ICP-Vegetation Coordination Centre, CEH Bangor, University of Wales, Bangor

    Google Scholar 

  • Unsworth MH, Heagle AS, Heck WW (1984) Gas exchange in open-top field chambers: measurement and analysis of atmospheric resistances to gas exchange. Atmos Environ 18:373–380

    Article  CAS  Google Scholar 

  • Volk M, Obrist D, Novak K, Giger R, Bassin S, Fuhrer J (2011) Subalpine grassland carbon dioxide fluxes indicate substantial carbon losses under increased nitrogen deposition, but not at elevated ozone concentration. Glob Chang Biol 17:366–376

    Article  Google Scholar 

  • Van Dingenen R (2009) The global impact of O3 on agricultural cropyields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  CAS  Google Scholar 

  • Wahid A, Milne E, Shamsi SRA, Ashmore MR, Marshall FM (2001) Effects of oxidants on soybean growth and yield in Pakistan Punjab. Environ Pollut 113:271–280

    Article  CAS  Google Scholar 

  • Wahid A (2006) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ 371:304–313

    Article  CAS  Google Scholar 

  • Wahid A, Maggs R, Shamasi SRM, Bell JNB, Ashmore MR (1995) Effects of air pollution on rice yield in the Pakistan Punjab. Environ Pollut 90:323–329

    Article  CAS  Google Scholar 

  • Wang X, Zheng Q, Yao F, Chen Z, Feng Z, Manning WJ (2007) Assessing the impact of ambient ozone on growth and yield of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) cultivar grown in Yangtze Delta, China, using three rates of application of Ethylenediurea (EDU). Environ Pollut 148:390–395

    Article  CAS  Google Scholar 

  • WHO (2000) Air quality guidelines for Europe. World Health Organization Regional Office for Europe. Copenhagen, Denmark

    Google Scholar 

  • Wan H, Zhang X, Zwiers F, Emori S, Shiogama H (2013) Effect of data coverage on the estimation of mean and variability of precipitation at global and regional scales. J Geophys Res 118:534–546

    Article  Google Scholar 

  • Wan W et al (2014) Ozone and ozone injury on plants in andaround Beijing, China. Environ Pollut 191:215–222

    Article  CAS  Google Scholar 

  • Wang X, Mauzerall DL (2004) Characterizing distributions of surfaceozone and its impact on grain production in China, Japan and SouthKorea: 1990 and 2020. Atmos Environ 38:4383–4402

    Article  CAS  Google Scholar 

  • Wang X, Zhang Q, Zheng F, Zheng Q, Yao F, Chen Z, Zhang W, Hou P, Feng Z, Song W, Feng Z, Lu F (2012) Effects of elevated O3 concentration on winter wheat and rice yields in the Yangtze River Delta, China. Environ Pollut 171:118–125

    Article  CAS  Google Scholar 

  • Wat EKW (1978) Prevention of ozone injury to plants by a new protectant chemical. Phytopathology 68:1225–1229

    Google Scholar 

  • Weidensaul TC (1980) N-[2-(2-oxo-1-imidazolinidyl)ethyl]-Nphenylurea as a protectant against ozone injury to laboratory fumigated pinto bean plants. Phytopathology 70:42–45

    Article  CAS  Google Scholar 

  • Wilkinson S, Gina Mills G, Rosemary Illidge R, Davies WJ (2011) How is ozone pollution reducing our food supply? J Exp Bot Adv Access 20. https://doi.org/10.1093/jxb/err317

  • Xin Y, Yuan X, Shang B, ManningWJ YA, Wang Y, Feng Z (2016) Moderate drought did not affect the effectiveness of ethylenediurea(EDU) in protecting Populus cathayana from ambient ozone. Sci Total Environ 569–570:1536–1544

    Article  CAS  Google Scholar 

  • Yamaguchi M, Hoshino H, Inada H, Akhtar N, Sumioka C, Takeda K, Izuta T (2014) Evaluation of the effects of ozone on yield of Japanese rice (Oryza sativa L.) based on stomatal ozone uptake. Environ Pollut 184:472–480

    Article  CAS  Google Scholar 

  • Yi F, Jiang F, Zhong F, Zhou X, Ding A (2016) The impacts of surface ozone pollution on winter wheat productivity in China- an econometric approach. Environ Pollut 208:326–335

    Article  CAS  Google Scholar 

  • Yonekura T, Izuta T (2017) Effects of Ozone on Japanese Agricultural Crops. In: Izuta T (ed) Air pollution impacts on plants in East Asia. Springer, Tokyo, pp 57–71

    Chapter  Google Scholar 

  • Yuan X, Calatayud V, Jiang L, Manning WJ, Hayes F, Tian Y, Feng Z (2015) Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU). Environ Pollut 205:199–208

    Article  CAS  Google Scholar 

  • Zhao Y, Bell JNB, Wahid A, Power SA (2011) Inter andintra-specific differences in the response of Chinese leafyvegetables to ozone. Water Air Soil Pollut 216:451–462

    Article  CAS  Google Scholar 

  • Zhang W, Wang G, Liu X, Feng Z (2014) Effects of elevated O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci 226:172–181

    Article  CAS  Google Scholar 

  • Zhu X, Feng Z, Sun T, Liu X, Tang H, Zhu J, Guo W, Kobayashi K (2011) Effects of elevated ozone concentration on yield of four Chinese cultivars of winter wheat under fully open-air field conditions. Glob Chang Biol 17:2697–2706

    Article  Google Scholar 

  • Zouzoulas D, Spyridon DK, Vassiliou G, Vardavakis E (2009) Effects of ozone fumigation on cotton (Gossypium hirsutum L.) morphology, anatomy, physiology, yield and qualitative characteristics of fibers. Environ Exp Bot 67:293–303

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Agrawal, M. (2018). Ozone Biomonitoring, Biomass and Yield Response. In: Tropospheric Ozone and its Impacts on Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-71873-6_4

Download citation

Publish with us

Policies and ethics