Skip to main content

Effect of Ozone on Physiological and Biochemical Processes of Plants

  • Chapter
  • First Online:
Tropospheric Ozone and its Impacts on Crop Plants

Abstract

The oxidizing nature of O3 is responsible for its phytotoxic effects on plants. O3 enters the plants through stomata and dissolves in the aqueous phase of the substomatal cavity to generate reactive oxygen species (ROS) such as superoxide anions (O2°-), hydrogen peroxide (H2O2), hydroxyl radicals (OH°) and singlet oxygen (1O2). Although ROS are an inevitable part of normal cellular metabolism and are continuously produced in the subcellular compartments like mitochondria, peroxisomes, chloroplasts, etc., O3 exposure stimulates the overproduction of ROS which exceeds the scavenging capacity of the cells intrinsic defense machinery. Plants have incorporated a constitutive antioxidative system which operates to scavenge the ROS generated under normal as well as stress conditions. The defense mechanism of plants has both enzymatic as well as non enzymatic components and works towards annihilating the ROS generated in apoplast as well as symplast. Excess of ROS that are not scavenged by apoplastic antioxidants , target the membrane permeability via the lipid peroxidation of the bilipid layer of the membranes. O3 also brings about alterations in the physiological process by affecting the biochemistry of photosynthetic machinery, disrupting the chlorophyll fluorescence kinetics and light as well as dark reactions of photosynthesis. O3 also alters the biophysical parameters like stomatal conductance and internal CO2 concentration which directly affects the rate of photosynthesis. In addition to this, excess of ROS stimulates the enhanced biosynthesis of cellular antioxidants. O3 stress also brings about changes in allocation of photosynthates, as more biomass is utilized in O3 injury repair rather than being converted to storage sugar, starch. O3 also affects the enzymes of nitrogen metabolism, thus influencing the biosynthesis of amino acids. This chapter investigates the role O3 in ROS generation and stimulation of antioxidant production. Effect of O3 on physiological processes, metabolite contents and nitrogen metabolism is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adir N, Zer H, Shochat I (2003) Photoinhibition – a historic perspective. Photosynth Res 76:343–370

    Article  CAS  Google Scholar 

  • Adrees M, Saleem F, Jabeen F, Rizwan M, Ali S, Khalid S, Ibrahim M, Iqbal N, Abbas F (2016) Effects of ambient gaseous pollutants on photosynthesis, growth, yield and grain quality of selected crops grown at different sites varying in pollution levels. Arch Agronom Sci 62(9):34–47

    Google Scholar 

  • Agrawal M, Agrawal SB (1990) Effects of ozone exposure on enzymes and metabolitesof nitrogen-metabolism. Scientia Horticulture 43:169–177

    Article  CAS  Google Scholar 

  • Agrawal SB, Agrawal M (1999) Low temperature scanning electron microscope studies of stomatal response in snap bean plants treated with ozone and ethylenediurea. Biotronics 28:45–53

    Google Scholar 

  • Agrawal GK, Rakwal R, Yonekura M, Saji H (2002) Rapid induction of defense/stress related proteins in leaves of rice (Oryza sativa) seedlings exposed to ozone is preceeded by newly phosphorylated proteins and changes in 66 K-Da ERK-type MAPK. J Plant Physiol 159:361–369

    Article  CAS  Google Scholar 

  • Ahsan N, Donnart T, Nouri MZ, Komatsu S (2010) Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. J Proteome Res 9:4189–4204

    Article  CAS  Google Scholar 

  • Altimir N, Kolari P, Tuovinen J-P, Vesala T, Back J, Suni T, Kulmala M, Hari P (2006) Foliage surface ozone deposition: a role for surface moisture? Biogeosciences 3:209–228

    Article  CAS  Google Scholar 

  • Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    Article  CAS  Google Scholar 

  • Antoni F (1994) Etude des interactions entre la pollution photo-oxydante (ozone), le stress hydrique et l’enrichissement en CO2 sur le métabolisme carboné chez l’épicéa et le hêtre. Master thesis, Université Henri Poincaré Nancy 1, France, pp 42

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: oxidative stress and signal transduction. Annu Rev Plant Biol 53:373–399

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2013) Photosynthesis under stressful environments: An overview. Photosynthetica 51:163–190. https://doi.org/10.1007/s11099-013-0021-6

    Article  CAS  Google Scholar 

  • Athar H, Khan A, Ashraf M (2008) Exogenously applied ascorbic acid alleviates salt induced oxidative stress in wheat. Environ Exp Bot 63:224–231. https://doi.org/10.1016/j.envexpbot.2007.10.018

    Article  CAS  Google Scholar 

  • Bagard M, Le Thiec D, Delacoˆte E, Hasenfratz-Sauder M-P, Banvoy J, Ge’rard J, Dizengremel P, Jolivet Y (2008) Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Physiol Plant 134:559–574

    Article  CAS  Google Scholar 

  • Baier M, Kandlbinder A, Golidack D, Dietz K-J (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28:1012–1020

    Article  CAS  Google Scholar 

  • Baishnab CT, Ralf O (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 7:1621–1633

    Article  CAS  Google Scholar 

  • Bandurska H, Borowaik K, Miara M (2009) Effect of two different ambient ozone concentrations on antioxidative enzymes in leaves of two tobacco cultivars with contrasting ozone sensitivity. Acta Biol Cracov Ser Bot 51(2):37–44

    Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  Google Scholar 

  • Barcelo AR, Pomar F, Lopez-Serrano M, Pedreno MA (2003) Peroxidase: a multifunctional enzyme in grapevines. Funct Plant Biol 30:577–591

    Article  Google Scholar 

  • Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG et al (2006) Hourly and seasonalvariation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrationsfor 3 years under fully open-air field conditions. Plant Cell Environ 29:20–90

    Article  CAS  Google Scholar 

  • Betz GA, Gerstner E, Stich S et al (2009) Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvaticaL.) grown under greenhouse conditions. Trees 23:539–553

    Article  Google Scholar 

  • Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    Google Scholar 

  • Betzelberger AM, Yendrek CR, Sun JD, Leisner CP, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol 160:1827–1839

    Article  CAS  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 89:58–67

    Google Scholar 

  • Bhattacharjee S (2015) Membrane lipid peroxidation and its conflict of interest: the two faces of oxidative stress. Curr Sci 107(11):1811–1823

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Sun JZ, Wang XZ, Han XG, Jiang GM (2008) Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Glob Chang Biol 14:46–59

    Google Scholar 

  • Biswas DK, Xu H, Li YG, Ma BL, Jiang GM (2013) Modification of photosynthesis and growth responses to elevated CO2 by ozone in two cultivars of winter wheat with different years of release. J Exp Bot 64(6):1485–1496

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann Bot 91:179–194

    Article  CAS  Google Scholar 

  • Blokhina O, Fagerstedt KV (2010) Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems. Physiol Plant 138(4):447–462

    Article  CAS  Google Scholar 

  • Bolhar-Nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber U, Lechner EG (1989) Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct Ecol 3:497–514

    Article  Google Scholar 

  • Booker FL, Burkey KO, Jones AM (2012) Re-evaluating the role of ascorbic acid and phenolic glycosides in ozone scavenging in the leaf apoplast of Arabidopsis thaliana L. Plant Cell Environ 35(8):1456–1466

    Article  CAS  Google Scholar 

  • Burkey KO, Eason G, Fiscus EL (2003) Factors that affect leafextracellular ascorbic acid content and redox status. Physiol Plant 117:51–57

    Article  CAS  Google Scholar 

  • Burkey KO, Wei C, Eason G, Ghosh P, Fenner GP (2000) Antioxidant metabolite levels in ozone-sensitive and tolerant genotypes of snap bean. Physiol Plant 110:195–200

    Article  CAS  Google Scholar 

  • van Buuren ML, Guidi, Fornalè, Ghetti F, Franceschetti M, Soldatini GF, Bagni N (2002) Ozone-response mechanisms in tobacco: implications of polyamine metabolism. New Phytol 156:389–398

    Article  Google Scholar 

  • Cabané M, Pireaux J-C, Léger E, Weber E, Dizengremel P, Pollet B, Lapierre C (2004) Condensed lignins are synthesized in poplar leaves exposed to ozone. Plant Physiol 134:586–594

    Article  CAS  Google Scholar 

  • Calatayud A, Barreno E (2004) Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant Physiol Biochem 42:549–555

    Article  CAS  Google Scholar 

  • Calatayud A, Ramirez JW, Iglesias DJ, Barreno E (2002) Effects of ozone on photosynthetic CO2 exchange, chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol Plant 116:308–316

    Article  CAS  Google Scholar 

  • Calatayud A, Iglesias D, Talon M, Barreno E (2003) Effects of 2 months ozone exposure in spinach leaves on photosynthesis, antioxidant systems and lipid peroxidation. Plant Physiol Biochem 41:839–845

    Article  CAS  Google Scholar 

  • Caregnato FF, Bortolin RF, Divan Junior AM, Moreira JCF (2013) Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere, 93(2):320–330

    Google Scholar 

  • Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2013) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394

    Article  CAS  Google Scholar 

  • Carlsson AS, Wallin G, Sandelius AS (1996) Species and age dependant sensitivity to ozone in young plants of pea, wheat and spinach: Effects on acyl lipid and pigment content and metabolism. Physiol Plant 98:271–280

    Article  CAS  Google Scholar 

  • Caregnato FF., Bortolin RF., Divan Junior AM., Moreira JCF. 2013. Exposure to elevated ozone levels differentially affects the antioxidant capacity and the redox homeostasis of two subtropical Phaseolus vulgaris L. varieties. Chemosphere, 93 (2): 320–330

    Google Scholar 

  • Castagna A, Ranieri A (2009) Detoxification and repair process of ozone injury: from O uptake to gene expression adjustment. Environ Pollut 157:1461–1469

    Google Scholar 

  • Castagna A, Nali C, Ciompi G, Lorenzini G, Soldatini GF, Ranieri A (2001) O3 exposure effects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytol 152:223–229

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2013) Intraspecific responses of six Indian clover cultivars under ambient and elevated levels of ozone. Environ Sci Pollut Res 20:5318–5329

    Article  CAS  Google Scholar 

  • Chaudhary N, Agrawal SB (2014) Role of gamma radiation in changing phytotoxic effect of elevated level of ozone in Trifolium alexandrinum L. (Clover). Atmos Pollu Res 5:104–112

    Google Scholar 

  • Chaudhary N, Singh S, Agrawal SB, Agrawal M (2013) Assessment of six Indian cultivars of mung bean against ozone by using foliar injury index and changes in carbon assimilation, gas exchange, chlorophyll fluorescence and photosynthetic pigments. Environ Monit Assess 185:7793–7807

    Article  CAS  Google Scholar 

  • Chernikova T, Robinson JM, Lee EH, Mulchi CL (2000) Ozonetolerance and antioxidant enzyme activity in soybean cultivars. Photosynth Res 6:15–12

    Article  Google Scholar 

  • Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, TanakaY IH, Masuo Y, Rakwal R (2008) Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res 7:2980–2998

    Article  CAS  Google Scholar 

  • Cong T, Booker FL, Burkey KO, Hu S (2009) Elevated atmospheric carbon dioxide and O3 differentially alter nitrogen acquisition in peanut. Crop Sci 49:1827–1836

    Article  CAS  Google Scholar 

  • Conklin PL, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974

    Article  CAS  Google Scholar 

  • Dalstein L, Torti X, Le Thiec D, Dizengremel P (2002) Physiologicalstudy of declining Pinuscembra (L.) trees in southern France. Trees 16:299–305

    Article  Google Scholar 

  • Danielsson H, Karlsson PE, Pleijel H (2013) An ozone response relationship for four Phleum pratense genotypes based on modelling of the phytotoxic ozone dose (POD). Environ Exp Bot 90:70–77

    Article  CAS  Google Scholar 

  • Dann MS, Pell EJ (1989) Decline of activity and quantity of ribulose bisphosphate carboxylase oxygenase and net photosynthesis in ozone-treated potato foliage. Plant Physiol 91:427–432

    Article  CAS  Google Scholar 

  • Davison AW, Barnes JD (1998) Effects of ozone on wild plants. New Phytol 139:135e151

    Article  Google Scholar 

  • Del R’ıo LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335

    Article  CAS  Google Scholar 

  • Degl’Innocenti E, Guidi L, Soldatini GF (2002) Characterization of the photosynthetic response of tobacco leaves to ozone: CO2 assimilation and chlorophyll fluorescence. J Plant Physiol 159:845–853

    Article  Google Scholar 

  • Deschaseaux A (1997) Effets de l’ozone sur les processus de fixation du CO2 chez Populus tremula x alba: approches enzymatique et isotopique (delta 13C). Master thesis, Université Henri Poincaré Nancy 1, France, pp 24

    Google Scholar 

  • D’haese D, Vandermeiren K, Asard H, Horemans N (2005) Other factors than apoplastic ascorbate contribute to the differential ozone tolerance of two clones of Trifolium repens L. Plant Cell Environ 28:623–632

    Article  Google Scholar 

  • Di Baccio D, Castagna A, Paoletti E, Sebastiani L, Ranieri A (2008) Could the differences in O3 sensitivity between two poplar clones be related to a difference in antioxidant defense and secondary metabolic response to O3 influx? Tree Physiol 28:1761–1772

    Article  Google Scholar 

  • Dietz KJ (2016) Thiol-based peroxidases and ascorbate peroxidases: why plants rely on multiple peroxidase systems in the photosynthesizing chloroplast? Mol Cells 39:20–25

    Article  CAS  Google Scholar 

  • Dietz KJ, Turkan I, Krieger-Liszkay A (2016) Redox- and reactive oxygen species-dependent signaling in and from the photosynthesizing chloroplast. Plant Physiol 171:1541–1550

    Article  CAS  Google Scholar 

  • Dizengremel P (2001) Effects of ozone on the carbon metabolism of forest trees. Plant Physiol Biochem 39:729–742

    Article  CAS  Google Scholar 

  • Dizengremel P, Le Thiec D, Bagard M, Jolviet Y (2008) Ozone risk assessment for plants: Central role of metabolism dependant changes in reducing power. Environ Pollut 156:11–15

    Article  CAS  Google Scholar 

  • Drogoudi PD, Ashmore MR (2002) Effects of elevated ozone on yield and carbon allocation in strawberry cultivars differing in developmental stage. Phyton-Annales Rei Botanicae 42:45–53

    CAS  Google Scholar 

  • Dumont J, Keski-Saari S, Keinänen M, Cohen D, Ningre N, KontunenSoppela S, Baldet P, Gibon Y, Dizengremel P, Vaultier M-N, Jolivet Y, Oksanen E, Le Thiec D (2014) Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes. Tree Physiol 34(3):253–266. https://doi.org/10.1093/treephys/tpu004.

    Article  CAS  Google Scholar 

  • Elstner EF (1991) Mechanism of oxygen activation in different compartments. In: Pell EJ, Steffen KL (eds) Active Oxygen/Oxidative Stress and Plant Metabolism. American Socienty of Plant Physiologists, Roseville, pp 13–25

    Google Scholar 

  • Emberson LD, Ashmore MR, Cambridge HM, Simpson D, Tuovinen JP (2000) Modelling stomatal ozone flux across Europe. Environ Pollut 109:403–413

    Article  CAS  Google Scholar 

  • Ernst D, Jürgensen M, Bahnweg G, Heller W, Müller-Starck G (2012) Common links of molecular biology with biochemistry and physiology in plants under ozone and pathogen attack. In: Matyssek R, Schnyder H, Osswald W, Ernst D, Munch PH (eds) Growth and defence in plants—resource allocation at multiple scales, Ecological Studies, vol 220. Springer, Berlin, pp 29–52

    Chapter  Google Scholar 

  • Feng ZZ, Kobayashi K, Ainsworth EA (2008) Impact of elevated ozone concentration on growth, physiology and yield of wheat (Triticum aestivum L.): a meta-analysis. Glob Chang Biol 14:2696–2708

    Google Scholar 

  • Feng ZZ, Pang J, Nouchi I, Kobayashi K, Yamakawa T, Zhu J (2010) Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions. Environ Pollut 158:3539–3545

    Article  CAS  Google Scholar 

  • Feng Z, Pang J, Kobayashi K, Zhu J, Ort DR (2011) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Glob Chang Biol 17:580–591

    Article  Google Scholar 

  • Feng Z, Sun J, Wan W, Hu E, Calatayud V (2014) Evidence of widespreadozone-induced visible injury on plants in Beijing, China. Environ Pollut 193:296–301

    Article  CAS  Google Scholar 

  • Feng Z, Wang L, Pleijel H, Zhu J, Kobayashi K (2016) Differential effects of ozone on photosynthesis of winter wheat among cultivars depend on antioxidative enzymes rather than stomatal conductance. Sci Total Environ 572:404–411

    Article  CAS  Google Scholar 

  • Feng ZZ, Kobayashi K, Wang XK, Feng ZW (2009) A meta-analysis of responses of wheat yield formation to elevated ozone concentration. Chin Sci Bull 54:249–255

    Article  CAS  Google Scholar 

  • Fiscus EL, Reid CD, Miller JE, Heagle AS (1997) Elevated CO2 reduces O3 flux and O3 -induced yield losses in soybeans: possible implications for elevated CO2 studies. J Exp Bot 48:307–313

    Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois J-JB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61:190–198

    Article  CAS  Google Scholar 

  • Fontaine V, Pelloux J, Podor M, Afif D, Gérant D, Grieu P, Dizengremel P (1999) Carbon fixation in Pinus halepensis submitted to ozone. Opposite response of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase. Physiol Plant 105:187–192

    Article  CAS  Google Scholar 

  • Forde BG, Lea PJ (2007) Glutamate in plants: metabolism, regulation, and signaling. J Exp Bot 58:2339–2358

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: regulation and signaling. New Phytol 146(3):359–388

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155:2–18

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090. https://doi.org/10.1089/ars.2013.5278

    Article  CAS  Google Scholar 

  • Francini A, Nali C, Picchi V, Lorenzini G (2007) Metabolic changes in white clover exposed to ozone. Environ Exp Bot 60:11–19

    Article  CAS  Google Scholar 

  • Frei M, Wissuwa M, Pariasca-Tanaka J, Chen CP, Südekum KH, Kohno Y (2012) Leaf ascorbic acid level: is it really important for ozone tolerance in rice? Plant Physiol Biochem 59:63–70

    Article  CAS  Google Scholar 

  • Friend AL, Tomlinson PT (1992) Mild ozone exposure alters 14C dynamics in foliage of Pinus taeda L. Tree Physiol 11:215–227

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143:8–96

    Article  Google Scholar 

  • Gaucher C, Costanzo N, Afif D, Mauffette Y, Chevrier N, Dizengremael P (2003) The impact of elevated ozone and carbon di oxide on young Acer saccharum seedlings. Physiol Plant 117:392–402

    Article  CAS  Google Scholar 

  • Gerosa G, Finco A, Antonio Negri A, Marzuoli R, Wieser G (2013) Ozone Fluxes to a Larch Forest Ecosystem at the Timberline in the Italian Alps. https://doi.org/10.5772/56282

  • Giacomo B, Forino LMC, Tagliasacchi AM, Bernardi R, Durante M (2010) Ozone damage and tolerance in leaves of two poplar genotypes. Caryologia 63:422–434

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gillespie KM, Rogers A, Ainsworth EA (2011) Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J Exp Bot 62:2667–2678

    Article  CAS  Google Scholar 

  • Gilroy S, Białasek M, Suzuki N, Górecka M, Devireddy AR, Karpiński S, Mittler R (2016) ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol 171(3):1606–1615

    Article  CAS  Google Scholar 

  • Glick RE, Schlagnhaufer CD, Arteca RN, Pell EJ (1995) Ozone-induced ethlylene emission accelerates the loss of ribulose-1, 5-bisphosphate carboxylase/oxygenase and nuclear-encoded mRNAs in senescing potato leaves. Plant Physiol 109:891–898

    Article  CAS  Google Scholar 

  • Godde D, Buchhold J (1992) Effect of long term fumigation with ozone on the turnover of the D-1 reaction centre polypeptide of photosystem II in spruce (Picea abies). Physiol Plant 86:568–574

    Article  CAS  Google Scholar 

  • Goumenaki E, Taybi T, Borland A, Barnes J (2010) Mechanisms underlying the impacts of ozone on photosynthetic performance. Environ Exp Bot 69(3):259–266

    Article  CAS  Google Scholar 

  • Grantz DA, Yang S (2000) Ozone impacts on allometry and root hydraulic conductance arenot mediated by source limitation not developmental age. J Exp Bot 51:919–927

    Article  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Gross GG (1977) Cell wall-bound malate dehydrogenase from horseradish. Phytochemistry 16(3):319–321

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E (2008) Ozone effects on high light induced photoinhibition in Phaseolus vulgaris. Plant Sci 174:590–596

    Article  CAS  Google Scholar 

  • Guidi L, Degl’Innocenti E, Martinelli F, Piras M (2009) Ozone effects on carbon metabolism in sensitive and insensitive Phaseolus cultivars. Environ Exp Bot 66:117–125

    Article  CAS  Google Scholar 

  • Guidi L, Di Cagno R, Soldatini GF (2000) Screening of beans cultivars for their response to ozone as evaluated by visible symptoms and leaf chlorophyll fluorescence. Environ Pollut 107:349–355

    Article  CAS  Google Scholar 

  • Guidi L, Nali C, Ciompi S, Lorenzini G, Soldatini GF (1997) The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J Exp Bot 48:173–179

    Article  CAS  Google Scholar 

  • Guidi L, Nali C, Lorenzini G, Filppi F, Soladatini GF (2001) Effect of chronic ozone fumigation on the photosynthetic process of poplar clones showing different sensitivity. Environ Pollut 113:245–254

    Article  CAS  Google Scholar 

  • Gunthardt-Goerg MS, McQuattie CJ, Maurer S, Frey B (2000) Visible and microscopy injury in leaves of five deciduous tree species related to current critical ozone levels. Environ Pollut 109:489–500

    Article  CAS  Google Scholar 

  • Guzy MR, Heath RL (1993) Response to ozone of varieties of common bean (Phaseolus vulgaris L). New Phytol 124:617–625

    Article  CAS  Google Scholar 

  • Hain FG (1987) Interaction of insects, trees and air pollutants. Tree Physiol 3:93–102

    Article  CAS  Google Scholar 

  • Hayes F, Mills G, Ashmore M (2009) Effects of ozone on inter- and intra-species competition and photosynthesis in mesocosms of Lolium perenne and Trifolium repens. Environ Pollut 157:208–214

    Article  CAS  Google Scholar 

  • Heath RL (2008) Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ Pollut 155:453–463

    Article  CAS  Google Scholar 

  • Heath RL, Taylor GE (1997) Physiological processes and plant responses to ozone exposure. In: Sanderman H, Welburn AR, Heath RL (eds) Forest decline and ozone. Springer, Berlin, p 317

    Chapter  Google Scholar 

  • Heiden AC, Hoffmann T, Kahl J, Kley D, Klockow D, Langebartels C, Mehlhorn H, Sandermann H, Schraudner M, Schuh G et al (1999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167

    Article  Google Scholar 

  • Hewitt DKL, Mills G, Hayes F, Wilkinson S, Davies W (2014) Highlighting the threat from current and near-future ozone pollution to clover in pasture. Environ Pollut 189:111–117

    Article  CAS  Google Scholar 

  • Hewitt DKL, Mills G, Hayes F, Norris D, Coyle M, Wilkinson S, Davies W (2016) N-fixation in legumes: An assessment of the potential threat posed by ozone pollution. Environ Pollut 208:909–918

    Article  CAS  Google Scholar 

  • Holopainen JK, Kainulainen P, Oksanen J (1997) Growth and reproduction of aphids and levels of free amino acids in Scotspine and Norway spruce in an open-air fumigation with ozone. Glob Chang Biol 3:139–147

    Article  Google Scholar 

  • Hoshika Y, Carriero G, Feng Z, Zhang Y, Paoletti E (2014) Determinants of stomatal sluggishness in ozoneexposed deciduous tree species. Sci Total Environ 481:453–458

    Article  CAS  Google Scholar 

  • Hoshika Y, De Marco A, Materassi A, Paoletti E (2016) Light intensity affects ozone-induced stomatal sluggishness in snapbean. Water Air Soil Pollut 227:419–425

    Article  CAS  Google Scholar 

  • Hoshika Y, Watanabe M, Inada N, Koike T (2013) Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold’s beech (Fagus crenata). Ann Bot 112:1149–1158. https://doi.org/10.1093/aob/mct166. Available online at www.aob.oxfordjournals.org

    Article  CAS  Google Scholar 

  • Hu WH, Song XS, Shi K, Xia XJ, Zhou YH, JQ Y (2008) Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica 46(4):581–588

    Article  CAS  Google Scholar 

  • Huang S, Aken OV, Schwarzländer M, Belt K, Millar AH (2016) The roles of mitochondrial reactive oxygen species in cellular signaling and stress response in plants. Plant Physiol 171:1551–1559

    Article  CAS  Google Scholar 

  • Iglesias DJ, Calatayud A, Barreno E, Primo-Milloa E, Talon M (2006) Responses of citrus plants to ozone: leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiol Biochem 44:125–131

    Article  CAS  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309. https://doi.org/10.1126/science.3287616

    Article  CAS  Google Scholar 

  • Inclan R, Gimeno BS, Dizengremel P, Sanchez M (2005) Compensation processes of Aleppo pine (Pinus halepensis Mill.) to ozone exposure and drought stress. Environ Pollut 137:517–524

    Article  CAS  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, UK/New York, p 1535

    Google Scholar 

  • Iriti M, Faoro F (2009) Chemical diversity and defence metabolism: how plants cope with pathogens and ozone pollution. Int J Mol Sci 10(8):3371–3399

    Article  CAS  Google Scholar 

  • Jajic I, Sarna T, Strzalka K (2015) Senescence, stress, and reactive oxygen species. Plants 4:393–411. https://doi.org/10.3390/plants4030393.

    Article  CAS  Google Scholar 

  • Jang SJ, Wi SJ, Choi YJ, An G, Park KY (2012) Increased polyamine biosynthesis enhances stress tolerance by preventing the accumulation of reactive oxygen species: T-DNA mutational analysis of Oryza sativa Lysine Decarboxylase-like protein. Mol Cells 34(3):251–262

    Article  CAS  Google Scholar 

  • Joo JH, Wang S, Chen JG, Jones AM, Fedoroff N (2005) Different signaling and cell death roles of heterotrimeric G protein a and b subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957–970

    Article  CAS  Google Scholar 

  • Jones CG, Hartley SE (1999) A protein competition model of phenolic allocation. Oikos 86:27–44. https://doi.org/10.2307/3546567

    Article  CAS  Google Scholar 

  • Jud W, Fischer L, Canaval E, Wohlfahrt G, Tissier A, Hansel A (2016) Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry. Atmos Chem Phys 16:277–292

    Article  CAS  Google Scholar 

  • Kainulainen P, Holopainen JK, Holopainen T (2000) Combined effects of ozone and nitrogen on secondary compounds, amino acids, and aphid performance in Scots pine. J Environ Qual 29:334–342

    Article  CAS  Google Scholar 

  • Kaiser WM (1979) Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta 145(4):377–382

    Article  CAS  Google Scholar 

  • Kaiser WM, Huber SC (2001) Post-translational regulation of nitratereductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  CAS  Google Scholar 

  • Kangasjarvi J, Jaspers P, Kollist H (2005) Signalling and cell death in ozone-exposed plants. Plant Cell Environ 28:1021–1036

    Article  CAS  Google Scholar 

  • Karlsson PE, Braun S, Broadmeadow M, Elvira S, Emberson L, Gimeno BS, Le Thiec D, Novak K, Oksanen E, Schaub M, Uddling J, Wilkinson M (2007) Risk assessments for forest trees: The performance of the ozone flux versus the AOT concepts. Environ Pollut 146:608–616

    Google Scholar 

  • Karuppanapandian T, Moon J-C, Kim C, Manoharan K, Kim W (2011) Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms. Aust J Crop Sci 5(6):709–725

    CAS  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563

    Article  CAS  Google Scholar 

  • Kerchev PI, Waszczak C, Lewandowska A et al (2016) Lack of GLYCOLATE OXIDASE 1, but not GLYCOLATE OXIDASE 2, attenuates the photorespiratory phenotype of CATALASE2-deficient Arabidopsis. Plant Physiol 171:1704–1719

    Article  CAS  Google Scholar 

  • Khan S, Andralojc PJ, Lea PJ, Parry MA (1999) 2’-carboxy-D-arabitinol 1-phosphate protects ribulose 1, 5-bisphosphate carboxylase/oxygenase against proteolytic breakdown. Eur J Biochem 266(3):840–847

    Google Scholar 

  • Kitajima H, Butler WL (1975) Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothynoquinone. Biochim Biophys Acta 376:105–115

    Article  CAS  Google Scholar 

  • Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998) Ozonesensitivity in hybrid poplar is correlated with a lack of defense-gene activation. Plant Physiol 118:1243–1252

    Article  CAS  Google Scholar 

  • Kollner B, Krause GHM (2003) Effects of two different ozone exposure regimes on chlorophyll and sucrose content of leaves and yield parameters of sugar beet (Beta vulgaris L.) and rape (Brassica napus L.) Water Air Soil Pollut 144:317–332

    Article  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd-edition edn. Springer-Verlag, New York, p 640

    Google Scholar 

  • Langebartels C, Kerner K, Leonardi S, Schraudner M, Trost M, Heller W, Sandermann H Jr (1991) Biochemical plant responses to ozone 1. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 95:882–889

    Article  CAS  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grun S, Sandermann H (2002) Oxidative burst and cell death in ozone exposed plants. Plant Physiol Biochem 40:567–575

    Article  CAS  Google Scholar 

  • Larcher W (2003) Physiological plant ecology, 4th edn.Springer,Berlin.Forde BG, Lea PJ. 2007. Glutamate in plants: metabolism, regulation and signaling. J Exp Bot 58:2339–2358

    Google Scholar 

  • Liu X, Sui L, Huang Y, Geng C, Yin B (2015) Physiological and visible injury responses in different growth stages of winter wheat to ozone stress and the protection of spermidine. Atmos Pollut Res 6:596–604

    Article  CAS  Google Scholar 

  • Loreto F, Fares S (2007) Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiol 143:1096–1100. https://doi.org/10.1104/pp.106.091892.

    Article  CAS  Google Scholar 

  • Loreto F, Pinelli P, Manes F, Kollist H (2004) Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol 24(4):361–367. https://doi.org/10.1093/treephys/24.4.361.

    Article  CAS  Google Scholar 

  • Lutz C, Anegg S, Gerant D, Alaoui-Sosse B, Gerard J, Dizengremel P (2000) Beech trees expose to high CO2 and to simulated summer ozone levels: effects on photosynthesis, chloroplast components and leaf enzyme activity. Physiol Plant 109:252–259

    Article  CAS  Google Scholar 

  • Maccarrone M, Veldink GA, Vliegenthart FG, Finazzi Agro A (1997) Ozone stress modulates amine oxidase and lipoxygenase expression in (Lens culinaris) seedlings. FEBS Lett 408:241–244

    Article  CAS  Google Scholar 

  • Maddison J, Lyons T, Plochl M, Barnes J (2002) Hydroponically cultivated radish fed l-galactono-1, 4-lactone exhibit increased tolerance to ozone. Planta 214:383–391

    Article  CAS  Google Scholar 

  • Maier-Maercker U (1999) Predisposition of trees to drought stress by ozone. Tree Physiol 19:71–78

    Article  CAS  Google Scholar 

  • Manderscheid R, Jager HJ, Kress LW (1992) Effects of ozone on foliar nitrogen metabolism of Pinus taeda L. and implications for carbohydrate metabolism. New Phytol 121:623–633

    Article  CAS  Google Scholar 

  • Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17(1):9–15. https://doi.org/10.1016/j.tplants.2011

    Article  CAS  Google Scholar 

  • Marre MT, Amicucci E, Zingarelli L, Albergoni F, Marre E (1998) The respiratory burst and electrolyte leakage induced by sulfhydryl blockers in Egeria densa leaves are associated with H2O2 production and are dependent on Ca2+ influx. Plant Physiol 118:1379–1387

    Article  CAS  Google Scholar 

  • McAinsh MR, Evans NH, Montgomery LT, North KA (2002) Calcium signalling in stomatal responsesto pollutants. New Phytol 153:441–447

    Article  CAS  Google Scholar 

  • Mckee IF, Bullimore JF, Long SP (1997) Will elevated CO protect the yield of wheat from O damage? Plant Cell Environ 20:77–84

    Article  CAS  Google Scholar 

  • Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67(13):3831–3844

    Article  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467. https://doi.org/10.1111/j.1365-3040.2009.02041.x

    Article  CAS  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Mills G, Pleijel H, Buker P et al (2010) Mapping critical levels for vegetation. Revision undertaken in Summer 2010 to include new flux- based critical levels and response functions for ozone, in: Mapping Manual 2004. International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops. http://icpvegetation.ceh.ac.uk/manuals/mapping_manual.html

  • Mills G, Pleijel H, Braun S, Büker P, Bermejo V, Calvo E, Danielsson H, Emberson L, Fernandez IG, Grünhage L, Harmens H, Hayes F, Karlsson PE, Simpson D (2011) New stomatal flux-based critical levels for ozone effects on vegetation. Atmos Environ 45(28):5064–5068. https://doi.org/10.1016/j.atmosenv.2011.06.009

    Article  CAS  Google Scholar 

  • Mishra AK, Agrawal SB (2015) Biochemical and physiological characteristics of tropical mung bean (Vigna radiata L.) cultivars against chronic ozone stress: an insight to cultivar-specific response. Protoplasma 252:797–811

    Article  CAS  Google Scholar 

  • Mishra AK, Rai R, Agrawal SB (2013) Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defense system. Indian J Biochem Biophys 50:139–149

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  Google Scholar 

  • Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3(8):730–735

    Article  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  CAS  Google Scholar 

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Mullineaux PM, Baker NR (2010) Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol 154:521–525

    Article  CAS  Google Scholar 

  • Murchie EH, Lawson T (2013) Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64(13):3983–3998

    Article  CAS  Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    Article  CAS  Google Scholar 

  • Niu J, Feng Z, Zhang W, Zhao P, Wang X (2014) Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3. PLoS One 9(6):e98572. https://doi.org/10.1371/journal.pone.0098572

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    Article  CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B et al (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484. https://doi.org/10.1111/j.1365-3040.2011.02400.x

    Article  CAS  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebartels C, Sandermann H Jr, Kangasjarvi J (2000) The ozone sensitive Arabidopsis rcd1 mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862

    Article  CAS  Google Scholar 

  • Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11(6):1297–1305

    Article  CAS  Google Scholar 

  • Pang J, Kobayashi K, Zhu J (2009) Yield and photosynthetic characteristics of flag leaves in Chinese rice (Oryza sativa L.) varieties subjected to free-air release of ozone. Agric Ecosyst Environ 132:203–211

    Article  CAS  Google Scholar 

  • Paoletti E, Grulke NE (2005) Does living in elevated CO2 ameliorate tree responseto ozone? A review on stomatal responses. Environ Pollut 137:483–493

    Article  CAS  Google Scholar 

  • Paoletti E, Grulke NE (2010) Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ Pollut 158:2664–2671

    Article  CAS  Google Scholar 

  • Paolacci AR, D’ovidio R, Marabottini R, Nali LG, Abanavoli MR, Badiani M (2001) Ozone induces adifferential accumulation of phenylalanine ammonia-lyase, chalcone synthase and chalcone isomerase RNAtranscripts in sensitive and resistant bean cultivars. Aust J Plant Physiol 28:425–428

    CAS  Google Scholar 

  • Paoletti E, Contran N, Bernasconi P, Günthardt-Goerg MS, Vollenweider P (2009) Structural and physiological responses to ozone in Manna ash (Fraxinus ornus L.) leaves of seedlings and mature trees under controlled and ambient conditions. Sci Total Environ 407:1631e1643. https://doi.org/10.1016/j.scitotenv.2008.11.061

    Article  CAS  Google Scholar 

  • Pasqualini S, Batini P, Ederli L, Antonielli M (2001) Effects of short-term ozone fumigation on tobacco plants: Response of the scavenging system and expression of the glutathione reductase. Plant Cell Environ 24(2):245–252

    Article  CAS  Google Scholar 

  • Pellegrini E (2014) PSII photochemistry is the primary target of oxidative stressimposed by ozone in Tilia americana. Urban For Urban Green 13:94–102

    Article  Google Scholar 

  • Pelloux J, Jolivet Y, Fontaine V, Banvoy J, Dizengremel P (2001) Changes in Rubisco and Rubisco activase gene expression and polypeptide content in Pinus halepensis M. Plant Cell Environ 24:123–131

    Article  CAS  Google Scholar 

  • Pellegrini E, Francini A, Lorenzini G, Nali C (2011) PSII photochemistry andcarboxylation efficiency in Liriodendron tulipifera under ozone exposure. Environ Exp Bot 70:217–226

    Article  CAS  Google Scholar 

  • Pesaresi P, Hertle A, Pribil M et al (2009) Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 21:2402–2423

    Article  CAS  Google Scholar 

  • Petrov VD, VanBreusegem F (2012) Hydrogen peroxide- a central hub for information flow in plant cells. AoBPlants. pls014. https://doi.org/10.1093/aob-pla/pls014

  • Pino ME, Mudd JB, Bailey-Serres J (1995) Ozone-induced alterations in the accumulation of newly synthesized proteins in leaves of maize. Plant Physiol 108:777–785

    Article  CAS  Google Scholar 

  • Possell M, Loreto F (2013) The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms. In: Niinemets Ü, Monson RK (eds) Biology, controls and models of tree volatile organic compound emissions, vol 5. Springer, Dordrecht, pp 209–235

    Chapter  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Integr Plant Biol 50:2–18

    Article  CAS  Google Scholar 

  • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2008) Evaluation of physiological and biochemical responses of two rice (Oryza sativa L.) cultivars to ambient air pollution using open top chambers at rural site in India. Sci Total Environ 407:679–691

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2007) Assessment of yield losses in tropical wheat using open top chambers. Atmos Environ 41:9543–9554

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M, Agrawal SB (2011) Effects of ambient O on wheat during reproductivedevelopment: gas exchange, photosynthetic pigments, chlorophyll fluorescence and carbohydrates. Photosynthetica 49:285–294

    Article  CAS  Google Scholar 

  • Rai R, Agrawal M (2014) Assessment of competitive ability of two Indian wheat cultivars under ambient O at different developmental stages. Environ Sci Pollut Res 21:1039–1053

    Article  CAS  Google Scholar 

  • Ranieri A, D’llrso G, Nali C, Lorenzini G, Soldatini GF (1996) Ozone stimulates apoplastic antioxidant systems in pumpkin leaves. Physiol Plant 97:381–387

    Article  CAS  Google Scholar 

  • Ranieri A, Castagna A, Soldatini GF (2000) Differential stimulation of ascorbate peroxidase isoforms by ozone exposure in sunflower plants. J Plant Physiol 156:266–271

    Article  CAS  Google Scholar 

  • Rainieri A, Giuntini D, Ferraro F, Nali B, Baldan G, Lorenzini G, Soldatini GF (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Biochem 39:999–1008

    Article  Google Scholar 

  • Rao MV, Paliyath G, Ormord DP (1995) Ultravoilet B and ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol 109:421–432

    Article  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  CAS  Google Scholar 

  • Rees DC, Tezcan FA, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Trans R Soc A 363:971–984

    Article  CAS  Google Scholar 

  • Reichenauer T, Bolhar- Nordenkempf HR, Ehrlich U, Soja G, Postl WF, Halbwachs F (1997) The influence of ambient and elevated O3 concentrations on photosynthesis in Populus nigra. Plant Cell Environ 20:1061–1069

    Article  CAS  Google Scholar 

  • Reiling K, Davison AW (1992) The response of native, herbaceous species toozone: growth and fluorescence screening. New Phytol 120:29–37

    Article  Google Scholar 

  • Renaut J, Bohler S, Hausman JF, Hoffmann L, Sergeant K, Ahsan N, Jolivet Y, Dizengremel P (2009) The impact of atmospheric composition on plants: a case study of ozone and poplar. Mass Spectrom Rev 28:495–516

    Article  CAS  Google Scholar 

  • Richter C (1992) Reactive oxygen and DNA damage in mitochondria. Mutat Res 275(3–6):249–255

    Article  CAS  Google Scholar 

  • Richards BL, Middleton JT, Hewitt WB (1958) Air pollution with reference to agronomic crops. Agron J 50:559–561

    Article  CAS  Google Scholar 

  • Roach T, Krieger-Liszkay A (2014) Regulation of Photosynthetic Electron Transport and Photoinhibition. Curr Protein Pept Sci 15:351–362

    Article  CAS  Google Scholar 

  • Robinson D (2005) Integrated root responses to variations in nutrient supply. In: BassiriRad (ed) Nutrient acquisition by plants. Springer, Berlin, pp 43–61

    Chapter  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2004) Plant glutaredoxin: still mysterious reducing systems. Cell Mol Life Sci 61:1266–1277

    Article  CAS  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990a) Pathway for the synthesis of triacylglycerol from monogalactosyldiacylglycerols in ozone-fumigated spinach leaves. Plant Physiol 94:773–780

    Article  CAS  Google Scholar 

  • Sakaki T, Kondo N, Yamada M (1990b) Free fatty acids regulate two galactosyltransferases in chloroplast envelope mambranes isolated from spinach leaves. Plant Physiol 94:781–787

    Article  CAS  Google Scholar 

  • Sakaki T, Saito K, Kawaguchi A, Kondo N, Yamada M (1990c) Conversion of monogalactosyldiacylglycerols to triacylglycerol in ozone-fumigated spinach leaves. Plant Physiol 94:766–772

    Article  CAS  Google Scholar 

  • Sakaki T, Kondo N, Sugahara K (2008) Breakdown of photosynthetic pigments and lipids in spinach leaves with ozone fumigation: role of active oxygens. Physiol Plant 59:28–34

    Article  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47–50

    Article  Google Scholar 

  • Sanmartin M, Drogoudi PD, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  Google Scholar 

  • Sarkar A, Rakwal R, Agrawal SB, Shibato J, Ogawa Y, Yoshida Y, Agrawal GK, Agrawal M (2010) Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical and proteomics approaches. J Proteome Res 9:4565–4584

    Article  CAS  Google Scholar 

  • Sarkar A, Agrawal SB (2010) Identification of ozone stress in Indian rice through foliar injury and differential protein profile. Environ Monit Assess 161:205–215

    Article  CAS  Google Scholar 

  • Sarkar A, Singh AA, Agrawal SB, Ahmed A, Rai SP (2015) Cultivar specific variations in antioxidative defense system, genome and proteome of two tropical rice cultivars against ambient and elevated ozone. Ecotoxicol Environ Saf 115:101–111

    Article  CAS  Google Scholar 

  • Scebba F, Canaccini F, Castagna A, Bender J, WeigelHJ RA (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Pollut 142:540–548

    Article  CAS  Google Scholar 

  • Schieber M, Chandel NS (2015) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462

    Article  CAS  Google Scholar 

  • Sgarbi E, Fornasiero RB, Lins AP, Bonatti PM (2003) Phenol metabolism is differentially affected by ozone in two cell lines from grape (Vitis vinifera L.) leaf. Plant Sci 165:951–957

    Article  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Article  CAS  Google Scholar 

  • Shokolenko IN, Wilson GL, Alexeyev MF (2014) Aging: a mitochondrial DNA perspective, critical analysis and an update. World J Exp Med 4(4):46–57

    Article  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2009) Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change. Plant Biol 11(Suppl. 1):101–108

    Article  CAS  Google Scholar 

  • Singh E, Tiwari S, Agrawal M (2010) Variability in antioxidant and metabolite levels, growth and yield of two soybean varieties: an assessment of anticipated yield losses under projected elevation of ozone. Agric Ecosyst Environ 135(3):168–177

    Article  CAS  Google Scholar 

  • Singh AA, Agrawal SB, Shahi JP, Agrawal M (2014) Assessment of growth and yield losses in two Zea mays L. cultivars (quality protein maize and nonquality protein maize) under projected levels of ozone. Environ Sci Pollut Res 21:2628–2641

    Article  CAS  Google Scholar 

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448(7155):791–794

    Article  CAS  Google Scholar 

  • Sitch S., Cox PM., Collins WJ., Huntingford C. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature Letters. doi:10.1038/nature06059.

  • Smith H, Neyra C, Brennan E (1990) The relationship between foliar injury, nitrogen metabolism, and growth parameters in ozonated soybeans. Environ Pollut 63(79):93

    Google Scholar 

  • Sprent J (2007) Evolving ideas of legume evolution and diversity; a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  CAS  Google Scholar 

  • Srinandhinidevi KM, Khopade M, Pangsatabam KD (2015) A preliminary study on the effects of ozone on induction of resistance in Cicer arietinum and Trigonella foenum against acute ozone exposure. IOSR J Biotechnol Biochem 1(5):06–14

    Google Scholar 

  • Sun JD, Feng ZZ, Ort DR (2014) Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean. Plant Sci 226:147–161

    Article  CAS  Google Scholar 

  • Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722

    Article  CAS  Google Scholar 

  • Takahama U, Oniki T (1997) A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol Plant 101:845–852

    Article  CAS  Google Scholar 

  • Tamaoki M, Matsuyama T, Kanna M, Nakajima N, Kubo A, Aono M, Saji H (2003) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216:552–560

    CAS  Google Scholar 

  • Tausz M, Grulke NE, Wieser G (2007) Defense and avoidance of ozone under global change. Environ Pollut 147:525–531

    Article  CAS  Google Scholar 

  • Temple MD, Perrone GG, Dawes IW (2005) Complex cellular responses to reactive oxygen species. Trends Cell Biol 15:319–326

    Article  CAS  Google Scholar 

  • Tetteh R, Yamaguchi M, Wada Y, Izuta T (2015) Effects of ozone on growth, net photosynthesis and yield of two African varieties of Vigna unguiculata. Environ Pollut 196:230–238

    Article  CAS  Google Scholar 

  • Tian S, Wang X, Li P, Wang H, Ji H, Xie J, Qiu Q, Shen D, Dong H (2016) Plant aquaporin AtPIP1; 4 links apoplastic H2O2 induction to disease immunity pathways. Plant Physiol 171:1635–1650

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M, Marshall FM (2006) Evaluation of ambient air pollution impact on carrot plants at a suburban site using open top chambers. Environ Monit Assess 119:15–30

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2011) Assessment of the variability in response of radish and brinjal at biochemical and physiological levels under similar ozone exposure conditions. Environ Monit Assess 175(1–4):443–454

    Article  CAS  Google Scholar 

  • Tiwari S, Agrawal M (2009) Protection of palak (Beta vulgaris L. var Allgreen) plants from ozone injury by ethylenediurea (EDU): Roles of biochemical and physiological variations in alleviating the adverse impacts. Chemosphere 75:1492–1499

    Article  CAS  Google Scholar 

  • Torsethaugen G, Pell EJ, Assmann SM (1999) Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc Natl Acad Sci U S A 96:13577–13582

    Article  CAS  Google Scholar 

  • Toderova D, Katerova Z, Alexieva V, Sergiev I (2015) Polyamines – possibilities for application to increase plant tolerance and adaptation capacity to stress. Genet Plant Physiol 5(2):123–144

    Google Scholar 

  • Torsethaugen G, Pitcher LH, Zilinskas BA, Pell EJ (1997) Overproduction of ascorbate peroxidase in the tobacco chloroplast does not provide protection against ozone. Plant Physiol 114:529–537

    Article  CAS  Google Scholar 

  • Tripathy BC, Oelmüller R (2012) Reactive oxygen species generation and signaling in plants. Plant Signal Behav 712:1621–1633

    Article  CAS  Google Scholar 

  • Tripathi R, Agrawal SB (2013) Interactive effect of supplemental ultraviolet B and elevated ozone on seed yield and oil quality of two cultivars of linseed (Linum usitatissimum L.) carried out in open top chambers. J Sci Food Agr 93:1016–1025

    Article  CAS  Google Scholar 

  • Udding J, Karlsson PE, Glorvigen A, Sellden G (2005) Ozone impairs autumnal resorption of nitrogen from birch (Betulapendula) leaves, causing an increase in whole-tree nitrogen loss through litter fall. Tree Physiol 26:113–120

    Article  Google Scholar 

  • Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbiosis. Annu Rev Plant Biol 64:781–805

    Article  CAS  Google Scholar 

  • Ueda Y, Uehara N, Sasaki H, Kobayashi K, Yamakawa T (2013) Impacts of acute ozone stress on superoxide dismutase (SOD) expression and reactive oxygen species (ROS) formation in rice leaves. Plant Physiol Biochem 70:396–402

    Article  CAS  Google Scholar 

  • Umponstira C, Kawayaskul S, Chuchaung S, Homhaul W (2009) Effect of Ozone on Nitrogen Fixation, Nitrogenase Activity and Rhizobium of Cowpea (Vigna unguiculata (L.) Walp). Naresuan University Journal 17(3):213–220

    Google Scholar 

  • UNECE (2004) Revised manual on methodologies and criteria for mapping critical levels/loads and geographical areas where they are exceeded. www.icpmapping.org (February 12, 2006)

  • Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J (2014) Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 21(9):1422–1441

    Article  CAS  Google Scholar 

  • Vahala J, Schlagnhaufer CD, Pell EJ (1998) Induction of an ACC synthase cDNA by ozone in light-grown Arabidopsis thaliana leaves. Physiol Plant 103:45–50

    Article  CAS  Google Scholar 

  • Vahisalu T, Puzorjoa I, Brosche M, Valk E, Lepiku M et al (2010) Ozone-triggered rapid stomatalresponse involves the production of reactive oxygen species and is controlled by SLAC1 and OST1. Plant J 162(3):442–453

    Article  CAS  Google Scholar 

  • Velikova V, Sharkey TD, Loreto F (2012) Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. Plant Signal Behav 7(1):139–141. https://doi.org/10.4161/psb.7.1.18521

    Article  Google Scholar 

  • Wagg S, Mills G, Hayes F, Wilkinson S, Davies WJ (2013) Stomata are less responsive to environmental stimuli in high background ozone in Dactylis glomerata and Ranunculus acris. Environ Pollut 175:82–91. https://doi.org/10.1016/j.envpol.2012.11.027. PMID: 23354156

    Article  CAS  Google Scholar 

  • Wahid A (2006a) Influence of atmospheric pollutants on agriculture in developing countries: a case study with three new wheat varieties in Pakistan. Sci Total Environ 371:304–313

    Article  CAS  Google Scholar 

  • Wahid A (2006b) Productivity losses in barley attributable to ambient atmospheric pollutants in Pakistan. Atmos Environ 40:5342–5354

    Article  CAS  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Tang H (2013) Dissimilarity of ascorbate glutathione (AsA-GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free air ozone exposure. Agric Ecosyst Environ 165:39–49

    Article  CAS  Google Scholar 

  • Wang J, Zeng Q, Zhu J, Chen C, Liu G, Tang H (2014) Apoplastic antioxidant enzyme responses to chronic free-air ozone exposure in two different ozone-sensitive wheat cultivars. Plant Physiol Biochem 82:183–193

    Article  CAS  Google Scholar 

  • Warren CR, Dreyer E, Adams MA (2003) Photosynthesis-Rubisco relationships in foliage of Pinus sylvestris in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores. Trees-Structure and Function 17:359–366

    CAS  Google Scholar 

  • Watanabe M, Yamaguchi M, Tabe C, Iwasaki M, Yamashita R, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007) Influences of nitrogen load on the growth and photosynthetic responses of Quercus serrata seedlings to O3. Trees 21:421–432

    Article  CAS  Google Scholar 

  • Watanabe M, Hoshika Y, Koike T (2014) Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation. J Plant Res 127(2):339–345

    Article  CAS  Google Scholar 

  • Whitaker BD, Lee EH, Rowland RA (1990) Ethylenediurea and ozone protection: foliar glycerolipids and steryl lipids in snap bean exposed to ozone. Physiol Plant 80:286–293

    Article  CAS  Google Scholar 

  • Wilkinson S, Mills G, Illidge R, Davies WJ (2011) How is ozone pollution reducing our food supply? J Exp Bot 63:527–536

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Long SP (2007) To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last 3 decades of experiments. Plant Cell Environ 30(9):1150–1162

    Article  CAS  Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry:a quantitative meta-analysis. Global Chang Biology 15:396–424

    Article  Google Scholar 

  • Yadav DK, Prasad A, Kruk J, Pospíšil P (2014) Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS One 9:e115466. https://doi.org/10.1371/journal.pone.0115466

  • Yamaguchi M, Watanabe M, Iwasaki M, Tabe C, Matsumura H, Kohno Y, Izuta T (2007a) Growth and photosynthetic responses of Fagus crenata seedlings to O3 under different nitrogen loads. Trees 21:707–718

    Google Scholar 

  • Yamaguchi M, Watanabe M, Matsuo N, Naba J, Funada R, Fukami M, Matsumura H, Kohno Y, Izuta T (2007b) Effects of nitrogen supply on the sensitivity to O3 of growth and photosynthesis of Japanese beech (Fagus crenata) seedlings. Water Air Soil Pollut Focus 7:131–136

    Article  CAS  Google Scholar 

  • Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010) Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees 24:175–184. https://doi.org/10.1007/s00468-009-0391-3

    Article  CAS  Google Scholar 

  • Yamamoto HY, Akasada T (1995) Degradation of antenna chlorophyll binding protein CP43 during photoinhibition of PS II. Biochemistry 28:9038–9045

    Article  Google Scholar 

  • Yamaguchi M, Watanabe M, Matsumura H, Kohno Y, Izuta T (2010) Effects of ozone on nitrogen metabolism in the leaves of Fagus crenata seedlings under different soil nitrogen loads. Trees 24:175–184

    Article  CAS  Google Scholar 

  • Yendrek CR, Ainsworth EA (2015) A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. J Exp Bot 66(22):7101–7112

    Article  CAS  Google Scholar 

  • Zhang J, Schaub M, Ferdinand JA, Skelly JM, Steiner KC, Savage JE (2010) Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings. Environ Pollut 158:2627–2634

    Article  CAS  Google Scholar 

  • Zhang WW, Niu J, Wang X, Feng Z (2011) Effects of ozone exposure on growth and photosynthesis of the seedlings of Liriodendron chinense (Hemsl.) Sarg, a native tree species of subtropical China. Photosynthetica 49(1):29–36

    Article  CAS  Google Scholar 

  • Zhang W, Wang G, Liu X, Feng Z (2014) Effects of O3 exposure on seed yield, N concentration and photosynthesis of nine soybean cultivars (Glycine max (L.) Merr.) in Northeast China. Plant Sci 226:172–181

    Article  CAS  Google Scholar 

  • Zhao F, Song C-P, He J, Zhu H (2007) Polyamines Improve K+/Na+ Homeostasis in Barley Seedlings by Regulating Root Ion Channel Activities. Plant Physiol 145(3):1061–1072

    Article  CAS  Google Scholar 

  • Zhao C-X, Wang Y-q, Wang Y-J, Zhang H-L, Zhao B-Q (2014) Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing. Huan Jing Ke Xue 35:418–427

    Google Scholar 

  • Zheng Y, Lyons T, Ollerenshaw JH, Barnes JD (2000) Ascorbate in the leaf apoplast is a factor mediating ozone resistance in Plantago major. Plant Physiol Biochem 38:403–411

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tiwari, S., Agrawal, M. (2018). Effect of Ozone on Physiological and Biochemical Processes of Plants. In: Tropospheric Ozone and its Impacts on Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-319-71873-6_3

Download citation

Publish with us

Policies and ethics