Skip to main content

Intelligent Fault Detection and Diagnostics

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 743))

Abstract

This chapter contains the last part of the research methodology. On the bases of the methods discussed in Chaps. 3 and 4, it develops the planned FDD system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kramer, M. A. (1991). Nonlinear principal componenet analysis using autoassociative neural networks. AIChE Journal, 37, 233–243.

    Article  Google Scholar 

  2. Scholz M., Fraunholz M., Selbig J. (2007) Nonlinear Principal Component Analysis: Neural Network Models and Applications in Principal Manifolds for Data Visualization and Dimension Reduction, pp. 44–67

    Google Scholar 

  3. Simani, S. (2005). Identification and fault diagnosis of a simulated model of an industrial gas turbine. IEEE Transactions on Industrial Informatics, 1, 202–216.

    Google Scholar 

  4. Guo Z., Uhrig R. E. (1992). Using genetic algorithms to select inputs for neural networks. In COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural Networks. pp. 223–234

    Google Scholar 

  5. Nelles, O. (2001). Nonlinear System Identification. Berlin: Springer.

    Book  MATH  Google Scholar 

  6. Oliveira, G. H. C., Campello, R. J. G. B., & Amaral, W. C. (1999). Fuzzy models within orthonormal basis function framework. In Fuzzy Systems Conference Proceedings, FUZZ-IEEE ’99. IEEE International, 2, 957–962.

    Google Scholar 

  7. Medeiros, A. V., Amaral W. C., Campello R. J. G. B. (2006). GA Optimization of OBF TS Fuzzy Models with Linear and non Linear Local Models. In 2006 Ninth Brazilian Symposium on Neural Networks (SBRN ’06). (pp. 66–71).

    Google Scholar 

  8. Campello R. J. G. B., Amaral W. C. (2002) Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control. In Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’02. (pp. 1399–1404)

    Google Scholar 

  9. Machado J. B., Amaral W. C., Campello R. J. G. (2007). Design of OBF-TS Fuzzy models based on multiple clustering validity criteria. In 19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007). (pp. 336–339)

    Google Scholar 

  10. Alci, M., & Asyali, M. H. (2009). Nonlinear system identification via Laguerre network based fuzzy systems. Fuzzy Sets and Systems., 160, 3518–3529.

    Article  MathSciNet  MATH  Google Scholar 

  11. Saravanamutto H. I. H., Rogers G. F. C., Cohen H. (1996). Gas Turbine Theory, (4th ed.).: Longman Group Limited

    Google Scholar 

  12. Walsh P. P., Fletcher P. (2004) Gas Turbine Performance. Blackwell Science Ltd.

    Google Scholar 

  13. Schobeiri M. (2005) Turbomachinery Flow Physics and Dynamic Performance. Verlag, Berlin, Heidelberg: Springer

    Google Scholar 

  14. Razak A. M. Y. (2007). Industrial Gas Turbines Performance and Operability. Woodhead Publishing Limited, CRC Press, LLC

    Google Scholar 

  15. Chui C. K. (1992). An Introduction to Wavelets. Academic Press Limited

    Google Scholar 

  16. Nelles, O. (1997). Orthonormal Basis Functions for Nonlinear System Identification with Local Linear Model Trees (LOLIMOT). IFAC Symposium on System Identification (SYSID) (pp. 667–672). Fukuoka, Japan: Kitakyushu.

    Google Scholar 

  17. Haglind, F. (2010). Variable geometry gas turbines for improving the part-load performance of marine combined cycles - gas turbine performance. Energy, 31, 467–476.

    Google Scholar 

  18. Coverse G. L. (1984). Extended Parametric Representation of Compressor Fans and Turbines Volume 2: Part user’s Manual (Parametric Turbine). NASA-CR-174646

    Google Scholar 

  19. Seborg D. E., Edgar T. F., Mellichamp D. A. (2003). Process Dynamics and Control. John Wiley and Sons

    Google Scholar 

  20. Mikles J., Fikar M. (2007). Process Modelling Identification and Control. Verlag: Springer

    Google Scholar 

  21. Srinivasarao M., Patwardhan S. C., Gudi R. D. (2006). From data to nonlinear predictive control. 1. Identification of multivariable nonlinear state observers. Industrial and Engineering Chemistry Research.

    Google Scholar 

  22. Dincer I., Rosen M. A. (2007). Exergy: Energy, Environment, and Sustainable Development. Elsevier Ltd

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiru Alemu Lemma .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemma, T.A. (2018). Intelligent Fault Detection and Diagnostics. In: A Hybrid Approach for Power Plant Fault Diagnostics. Studies in Computational Intelligence, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-71871-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71871-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71869-9

  • Online ISBN: 978-3-319-71871-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics