Skip to main content

Model Identification Using Neuro-Fuzzy Approach

  • Chapter
  • First Online:
A Hybrid Approach for Power Plant Fault Diagnostics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 743))

  • 636 Accesses

Abstract

This chapter contains the discussion on fundamental concepts related to nonlinear model identification. First, linear in parameter model identification techniques are presented. This covers static and dynamic systems. Following that, the idea of developing nonlinear models in the framework of Orhonormal Basis Functions (OBF) is described. In Sect. 3.3, basic theory of neural networks and fuzzy systems are elaborated. In the state of the art designs, one of them is constructed in the structure of the other allowing the development of a transparent model that can be trained with relatively minimal effort. Section 3.4 is dedicated to the discussion of nonlinear system identification using combined version of neural networks and fuzzy systems. Last section of the chapter deals with three different model training algorithms Least squares based, back-propagation and particle swarm optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L, Ljung. (1999). System identification: Theory for the user., Prentice Hall Information Series.

    Google Scholar 

  2. Sderstrm, T., & Stoica, P. (1988). System identification., Prentice Hall International Series in Systems and Control Engineering Englewood Cliffs: Prentice-Hall, Inc.

    Google Scholar 

  3. Nelles, O. (2001). Nonlinear system identification: From classical approaches to neural networks and fuzzy models. Berlin: Springer.

    Book  MATH  Google Scholar 

  4. Wahlberg, B. (1991). System identification using Laguerre models. IEEE Transactions on Automatic Control, 36, 551–562.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brinker, A. C. D. (1995). Meixner-like functions having a rational z-transform. International Journal of Circuit Theory and Applications, 23, 237–246.

    Article  MATH  Google Scholar 

  6. Belt, H. J. W. (1997). Orthonormal bases for adaptive filtering. Eindhoven: Technische Universiteit.

    Google Scholar 

  7. Wahlberg, B. (1994). System identification using Kautz models. IEEE Transactions on Automatic Control, 39, 1276–1282.

    Article  MathSciNet  MATH  Google Scholar 

  8. Heuberger, P. S. C., Van den Hof, P. M. J., & Bosgra, O. H. (1995). A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control, 40, 451–465.

    Article  MathSciNet  MATH  Google Scholar 

  9. Ninness, B., & Gustafsson, F. (1997). A unifying construction of orthonormal bases for system identification. IEEE Transactions on Automatic Control, 42, 515–521.

    Article  MathSciNet  MATH  Google Scholar 

  10. Toth, R. (2008, December). Modeling and identification of linear parameter-varying systems, an orthonormal basis function approach. Ph.D. dissertation, Delft University of Technology.

    Google Scholar 

  11. Finn, C. K., Wahlberg, B., & Ydstie, B. E. (1993). Constrained predictive control using orthogonal expansion. Journal of AIChE, 39, 1810–1826.

    Article  Google Scholar 

  12. Patwardhan, S. C., & Shah, S. L. (2005). From data to diagnosis and control using generalized orthonormal basis filters. Part I: Development of state observers. Journal of Process Control, 15, 819–835.

    Article  Google Scholar 

  13. Boyd, S., & Chua, L. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems, 32, 1150–1161.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogunfunmi, T. (2007, September, 5). Adaptive nonlinear system identification: The Volterra and Wiener model approaches. New York: Springer Science and Business Media.

    Google Scholar 

  15. Seretis, C., & Zafiriou, E. (1997). Nonlinear dynamical system identification using reduced Volterra models with generalised orthonormal basis functions. In Proceedings of the American Control Conference (Vol. 5, pp. 3042–3046).

    Google Scholar 

  16. Parker, R. E., & Tummala, M. (1992). Identification of Volterra systems with a polynomial neural network. In IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP-92 (Vol. 4, pp. 561–564).

    Google Scholar 

  17. Wray, J., & Green, G. (1994). Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network. Biological Cybernetics, 71, 187–195.

    Article  MATH  Google Scholar 

  18. Marmarelis, V. Z., & Zhao, X. (1997). Volterra models and three-layer perceptrons. IEEE Transactions on Neural Networks, 8, 1421–1433.

    Article  Google Scholar 

  19. Liu, G. P., Kadirkamanathan, V., & Billings, S. A. (1998). On-line identification of nonlinear systems using Volterra polynomial basis function neural networks. Neural Networks, 11, 1645–1657.

    Article  Google Scholar 

  20. Alataris, K., Berger, T., & Marmarelis, V. (2000). A novel network for nonlinear modeling of neural systems with arbitrary point-process inputs. Neural Networks, 13, 255–266.

    Article  Google Scholar 

  21. Back, A. D., & Tsoi, A. C. (1996). Nonlinear system identification using discrete laguerre functions. Journal of Systems Enginnering, 6, 194–270.

    Google Scholar 

  22. Sentoni, G., Agamennoni, O., Desages, A., & Romagnoli, J. (1996). Approximate models for nonlinear process control. Journal of AIChE, 42, 2240–2250.

    Article  Google Scholar 

  23. Balestrino, A., & Caiti, A. (2000). Approximation of Hammerstein/Wiener dynamic models. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN 2000 (Vol. 1, pp. 70–74).

    Google Scholar 

  24. Abrahantes Vazquez, M., & Agamennoni, O. E. (2001). Approximate models for nonlinear dynamical systems and their generalization properties. Mathematical and Computer Modelling, 33, 965–986.

    Article  MathSciNet  MATH  Google Scholar 

  25. Diwanji, V., Godbole, A., & Waghode, N. (2006). Nonlinear model predictive control for thrust tracking of a gas turbine. In IEEE International Conference on Industrial Technology, ICIT 2006 (pp. 3044–3048).

    Google Scholar 

  26. Wiener, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series. New York: MIT and Wiley.

    MATH  Google Scholar 

  27. Sbarbaro, D., & Johansen, T. A. (1997). Multiple local Laguerre models for modelling nonlinear dynamic systems of the Wiener class. In IEE Proceedings Control Theory and Applications (Vol. 144, 375–380).

    Google Scholar 

  28. Nelles, O. (1997). Orthonormal basis functions for nonlinear system identification with local linear model trees-LOLIMOT. In IFAC Proceedings Volumes (Vol. 30(11), pp. 639–44).

    Google Scholar 

  29. Oliveira, G. H. C., Campello, R. J. G. B., & Amaral, W. C. (1999). Fuzzy models within orthonormal basis function framework. In IEEE International Fuzzy Systems Conference Proceedings, FUZZ-IEEE ’99 (Vol. 2, pp. 957–962).

    Google Scholar 

  30. Campello, R. J. G. B., & Amaral, W. C. (2002). Takagi-Sugeno fuzzy models within orthonormal basis function framework and their application to process control. In Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE’02 (pp. 1399–1404).

    Google Scholar 

  31. Campello, R. J. G. B., Von Zuben, F. J., Amaral, W. C., Meleiro, L. A. C., & Maciel Filho, R. (2003). Hierarchical fuzzy models within the framework of orthonormal basis functions and their application to bioprocess control. Chemical Engineering Science, 58, 4259–4270.

    Article  Google Scholar 

  32. Campello, R. J. G. B., Meleiro, L. A. C., & Amaral, W. C. (2004). Control of a bioprocess using orthonormal basis function fuzzy models. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems (Vol. 2, pp. 801–806).

    Google Scholar 

  33. Medeiros, A. V., Amaral, W. C., & Campello, R. J. G. (2006). GA optimization of generalized OBF TS fuzzy models with global and local estimation approaches. In 2006 IEEE International Conference on Fuzzy Systems (pp. 1835–1842).

    Google Scholar 

  34. Machado, J. B., Amaral, W. C., & Campello, R. J. G. (2007). Design of OBF-TS fuzzy models based on multiple clustering validity criteria. In 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007 (pp. 336–339).

    Google Scholar 

  35. Alci, M., & Asyali, M. H. (2009). Nonlinear system identification via Laguerre network based fuzzy systems. Fuzzy Sets and Systems, 160, 3518–3529.

    Article  MathSciNet  MATH  Google Scholar 

  36. Box, G. E. P., & Jenkins, G. M. (1976). Time series forcasting and control (Revised ed.). San Francisco: Holden-Day Inc.

    Google Scholar 

  37. Kramer, M. A. (1991). Nonlinear principal componenet analysis using autoassociative neural networks. AIChE Journal, 37, 233–243.

    Article  Google Scholar 

  38. Ogaji, S., Sampath, S., Singh, R., & Probert, D. (2002). Novel approach for improving power-plant availability using advanced engine diagnostics. Applied Energy, 72, 389–407.

    Article  Google Scholar 

  39. Lu, P. J., Zhang, M. C., Hsu, T. C., & Zhang, J. (2001). An evaluation of engine faults diagnostics using artificial neural networks. Journal of Engineering for Gas Turbines and Power, 123, 340–346.

    Article  Google Scholar 

  40. Bourassa, M. A. J. (1999). Autoassociative neural networks with an application to fault diagnosis of a gas turbine engine (p. 248). Canada: Royal Military College of Canada (Canada).

    Google Scholar 

  41. Cybennko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2, 303–314.

    Article  MathSciNet  Google Scholar 

  42. Funahashi, K. I. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2, 183–192.

    Article  Google Scholar 

  43. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2, 359–366.

    Article  Google Scholar 

  44. Simani, S., Fantuzzi, C., & Spina, R. P. (1998). Application of a neural network in gas turbine control sensor fault detection. In Proceedings of the 1998 IEEE International Conference on Control Applications (Vol. 1, pp. 182–186).

    Google Scholar 

  45. Ogaji, S. O. T., & Singh, R. (2002). Advanced engine diagnostics using artificial neural networks. In 2002 IEEE International Conference on Artificial Intelligence Systems (ICAIS 2002) (pp. 236–241).

    Google Scholar 

  46. Sreedhar, R., Fernandez, B., & Masada, G. Y. (1992). A neural network based adaptive fault detection scheme. In Proceedings of the American Control Conference (Vol. 5, pp. 3259–3263).

    Google Scholar 

  47. Arranz, A., Cruz, A., Sanz-Bobi, M. A., Ruz, P., & Coutio, J. (2008). DADICC: Intelligent system for anomaly detection in a combined cycle gas turbine plant. Expert Systems with Applications, 34, 2267–2277.

    Article  Google Scholar 

  48. Fast, M., & Palm, T. (2010). Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant. Energy, 35, 1114–1120.

    Article  Google Scholar 

  49. Hwang, B. C. (1993). Fault detection and diagnosis of a nuclear power plant using artificial neural networks. Thesis: Simon Fraser University, Canada.

    Google Scholar 

  50. Keyvan, S. (2001). Traditional signal pattern recognition versus artificial neural networks for nuclear plant diagnostics. Progress in Nuclear Energy, 39, 1–29.

    Article  Google Scholar 

  51. Embrechts, M. J., & Benedek, S. (1997). Identification of nuclear power plant transients with neural networks. In: IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation (Vol. 1, pp. 912–916).

    Google Scholar 

  52. Weerasinghe, M., Gomm, J. B., & Williams, D. (1998). Neural networks for fault diagnosis of a nuclear fuel processing plant at different operating points. Control Engineering Practice, 6, 281–289.

    Article  Google Scholar 

  53. Fantoni, P. F., & Mazzola, A. (1996). A pattern recognition-artificial neural networks based model for signal validation in nuclear power plants. Annals of Nuclear Energy, 23, 1069–1076.

    Article  Google Scholar 

  54. Park, J., & Sandberg, I. W. (1991). Universal Approximation Using Radial Basis Function Networks. Neural Computation, 3, 246–257.

    Article  Google Scholar 

  55. Chen, T., Chen, A. T., & Chen, R. (1995). Approximation capability to functions of several variables, nonlinear functionals and operators by radial basis function neural networks. IEEE Transactions on Neural Networks, 6, 904–910.

    Article  Google Scholar 

  56. Muoz, A., & Sanz-Bobi, M. A. (1998). An incipient fault detection system based on the probabilistic radial basis function network: Application to the diagnosis of the condenser of a coal power plant. Neurocomputing, 23, 177–194.

    Article  Google Scholar 

  57. Chun-ling, X., Jen-Yuan, C., Xiao-cheng, S., & Jing-min, D. (2008). Fault diagnosis of nuclear power plant based on genetic-RBF neural network. In 15th International Conference on Mechatronics and Machine Vision in Practice, M2VIP (pp. 334–339).

    Google Scholar 

  58. Verbruggen, H. B., Zimmermann, H. J., & Babuska, R. (1999). Fuzzy algorithms for control., International Series in Intelligent Technologies Boston: Kluwer Academic Publishers.

    Google Scholar 

  59. Korbicz, J., Koscielny, J. M., & Kowalczuk, Z. (2004). Fault diagnosis: Models, artificial intelligence, applications. Berlin: Springer.

    Book  MATH  Google Scholar 

  60. Diao, Y., & Passino, K. M. (2004). Fault diagnosis for a turbine engine. Control Engineering Practice, 12, 1151–1165.

    Article  Google Scholar 

  61. Ogaji, S. O. T., Marinai, L., Sampath, S., Singh, R., & Prober, S. D. (2005). Gas-turbine fault diagnostics: A fuzzy-logic approach. Applied Energy, 82, 81–89.

    Article  Google Scholar 

  62. Ayoubi, M., & Isermann, R. (1997). Neuro-fuzzy systems for diagnosis. Fuzzy Sets and Systems, 89, 289–307.

    Article  Google Scholar 

  63. Palade, V., Patton, R. J., Uppal, F. J., Quevedo, J., & Daley, S. (2002). Fault diagnosis of an industrial gas turbine using neuro-fuzzy methods. In Proceedings of the 15th IFAC World Congress Barcelona (pp. 2477–2482).

    Google Scholar 

  64. Zio, E., & Gola, G. (2006). Neuro-fuzzy pattern classification for fault diagnosis in nuclear components. Annals of Nuclear Energy, 33, 415–426.

    Article  Google Scholar 

  65. Korbicz, J., & Kowal, M. (2007). Neuro-fuzzy networks and their application to fault detection of dynamical systems. Engineering Applications of Artificial Intelligence, 20, 609–617.

    Article  Google Scholar 

  66. Razavi-Far, R., Davilu, H., Palade, V., & Lucas, C. (2009). Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks. Neurocomputing, 72, 2939–2951.

    Article  Google Scholar 

  67. Nelles, O., & Isermann, R. (1996). Basis function networks for interpolation of local linear models. In Proceedings of the 35th IEEE Decision and Control (Vol. 1, pp. 470–475).

    Google Scholar 

  68. Ruz-Hernandez, J. A., Sanchez, E. N., & Suarez, D. A. (2005). Neural networks-based scheme for fault diagnosis in fossil electric power plants. In Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN ’05 (Vol. 3, pp. 1740–1745).

    Google Scholar 

  69. Wenli, Y., Lee, K. Y., Junker, S. T., & Ghezel-Ayagh, H. (2008). Fault diagnosis and accommodation system with a hybrid model for fuel cell power plant. In Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1–8): IEEE.

    Google Scholar 

  70. Rakhshani, E., Sariri, I., & Rouzbehi, K. (2009). Application of data mining on fault detection ad prediction in Boiler of power plant using artificial neural network. In International Conference on Power Engineering, Energy and Electrical Drives, POWERENG ’09 (pp. 473–478).

    Google Scholar 

  71. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (Vol. 4, pp. 1942–1948).

    Google Scholar 

  72. Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in particle swarm optimization. In Proceedings of the 2000 Congress on Evolutionary Computation (Vol. 1, pp. 84–88).

    Google Scholar 

  73. Clerc, M., & Kennedy, J. (2002). The particle swarm - explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73.

    Article  Google Scholar 

  74. Yang, E., Erdogan, A. T., Arslan, T., & Barton, N. (2007). An improved particle swarm optimization algorithm for power-efficient wireless sensor networks. In ECSIS Symposium on Bio-inspired, Learning, and Intelligent Systems for Security (BLISS 2007) (pp. 76–82).

    Google Scholar 

  75. Huang, D. S., Li, K., Irwin, G., He, Q., & Han, C. (2006). An improved particle swarm optimization algorithm with disturbance term. In Computational Intelligence and Bioinformatics (Vol. 4115, pp. 100–108). Berlin: Springer.

    Google Scholar 

  76. Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C., Hu, W., et al. (2007). A new BP network based on improved PSO algorithm and its application on fault diagnosis of gas turbine. In Advances in Neural Networks (Vol. 4493, pp. 277–283). Heidelberg: Springer.

    Google Scholar 

  77. Porto, V., Saravanan, N., Waagen, D., Eiben, A., & Angeline, P. (1998). Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In Evolutionary Programming VII (pp. 601–610). Heidelberg: Berlin.

    Google Scholar 

  78. Macdonald, D. W., & Sillero-Zubiri, C. (2004). The biology and conservation of wild canids. Oxford: Oxford University Press. (3 June 2010).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamiru Alemu Lemma .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lemma, T.A. (2018). Model Identification Using Neuro-Fuzzy Approach. In: A Hybrid Approach for Power Plant Fault Diagnostics. Studies in Computational Intelligence, vol 743. Springer, Cham. https://doi.org/10.1007/978-3-319-71871-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71871-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71869-9

  • Online ISBN: 978-3-319-71871-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics