Advertisement

Genetic Improvement of Local Goats

  • Nuno Carolino
  • António Vicente
  • Inês Carolino
Chapter

Abstract

Genetic improvement of domestic animals through selection of the breeding stock, including small ruminants like goats, has been acknowledged as a powerful tool. It has been used by mankind for the supply of the most varied products, and for increasing productivity and global yields. During the next decades, genetic improvement of goat populations can be a key factor for livestock in extreme conditions, being resistant to conditions resulting from climate change, and diseases, and providing good quality products in many regions of the globe. In a general program of genetic improvement and selection of goats, it will be fundamental to monitor the genetic progress and make the right choices of future breeders to achieve the genetic improvement of a herd. A selection plan should have well- defined improvement objectives, which will obviously differ according to whether the systems are for producing goat meat, dairy, dual purpose, or other more specific products (e.g., wool). Techniques and methodologies of selection have evolved at a remarkable rate, from individual selection to best linear unbiased prediction (BLUP) and genomics, allowing us to obtain ever more efficient and precise results when we combine different methodologies and information sources. The aim of this chapter is to present and discuss the breeding goals and selection strategies used in genetic improvement programs of goat populations and local breeds.

Notes

Acknowledgements

The authors would like to thank the Programm ALT20-03-0246-FEDER-000021, ALT-BiotechRepGen.

References

  1. Abegaz S, Gizaw S, Dessie T et al (2014) Optimizing alternative schemes of community-based breeding programs for two Ethiopian goat breeds. Acta Agrar Kaposváriensis 18(Suppl. 1):47–55Google Scholar
  2. Arnason T, Van Vleck LD (2000) Genetic improvement of the horse. In: Bowling AT, Ruvinsky A (eds) The genetics of the horse. CABI Publishing, New York, US, pp 473–497CrossRefGoogle Scholar
  3. Avendaño SB, Villanueva B, Woolliams JA (2003) Expected increases in genetic merit from using optimized contributions in two livestock populations of beef cattle and sheep. J Anim Sci 81(12):2964–2975PubMedCrossRefGoogle Scholar
  4. Barillet F, Mariat D, Amigues Y et al (2009) Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie. J Gen Virol 90(Pt 3):769–776PubMedCrossRefGoogle Scholar
  5. Blasco (2013) Animal breeding methods and sustainability. In: Paul Christou P, Savin R, Costa-Pierce BA, et al (eds) Sustainable food production. Springer, New York, US, pp 41–57Google Scholar
  6. Bourdon RM (1997) Understanding animal breeding. Prentice Hall, New Jersey, USGoogle Scholar
  7. Bourdon R, Golden B (2000) EPDs & economics determining the relative importance of traits. Beef Magazine, 1 Feb 2000. Available at: http://www.beefmagazine.com/mag/beef_epds_economics_determining
  8. Brito LF, Kijas JW, Ventura RV et al (2017) Genetic diversity and signatures of selection in various goat breeds revealed by genome-wide SNP markers. BMC Genom 18:229.  https://doi.org/10.1186/s12864-017-3610-0 CrossRefGoogle Scholar
  9. Burrow HM, Gulbransen B, Johnson SK et al (1991) Consequences of selection for growth and heat resistance on growth, feed conversion efficiency, commercial carcass traits and meat quality of zebu crossbred cattle. Aust J Agric Res 42:1373–1383CrossRefGoogle Scholar
  10. Cantor RM, Lange K, Sinsheimer JS (2010) Prioritizing GWAS results: a review of statistical methods and recommendations for their application. Am J Hum Genet 86(1):6–22PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cardellino (2016) Preface. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV, et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, Colombia, pp 57–74Google Scholar
  12. Carolino N (2006) Estratégias de selecção na raça bovina Alentejana. Ph.D. thesis. Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Lisbon, PortugalGoogle Scholar
  13. Carolino N, Bruno de Sousa B, Carolino I et al (2016) Biodiversidade caprina em Portugal. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, Colombia, pp 57–74Google Scholar
  14. Cunningham EP, Moen RA, Gjedrem T (1970) Restriction of selection indexes. Biometrics 26(1):67–74PubMedCrossRefGoogle Scholar
  15. De los Campos G, Sorensen D, Gianola D (2015) Genomic heritability: what is it? PLoS Genet 11(5):e1005048.  https://doi.org/10.1371/journal.pgen.1005048
  16. De Rancourt M, Fois N, Lavin MP et al (2005) Mediterranean sheep and goats production: an uncertain future. Small Rum Res 62(3):167–179CrossRefGoogle Scholar
  17. Dekkers JCM, Gibson JP, Bijma P et al (2004) Design and optimisation of animal breeding programmes—lecture notes, Iowa State University, Ames, US. Available at: http://www.anslab.iastate.edu/Class/AnS652X/chapter1.pdf
  18. Dekkers JCM, Schook GE (1990) Genetic and economic evaluation of nucleus breeding schemes for commercial artificial insemination firms. J Dairy Sci 73(7):1920–1937CrossRefGoogle Scholar
  19. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Burnt Mill, England, Longman, UKGoogle Scholar
  20. FAO (2010) Breeding strategies for sustainable management of animal genetic resources. FAO animal production and health guidelines. No. 3, Rome, Italy. Available at: http://www.fao.org/docrep/012/i1103e/i1103e.pdf
  21. FAO (2013) Milk and dairy products in human nutrition, Rome, Italy. Available at http://www.fao.org/docrep/018/i3396e/i3396e.pdf
  22. Fonseca PD (2015) Avaliação da raça Serpentina nos seus sistemas de produção. Ph.D. thesis. Universidade de Évora, Évora, PortugalGoogle Scholar
  23. Gama LT (2002) Melhoramento Genético Animal. Escolar Editora, Lisboa, PortugalGoogle Scholar
  24. Gibson JP, Kennedy BW (1990) The use of constrained selection indexes in breeding for economic merit. Theor Appl Genet 80(6):801–805PubMedCrossRefGoogle Scholar
  25. Graser H (1994) The value of recording scrotal size and days to calving. Animal Genetics and Breeding Unit, University of New England Armidale NSW 235. Technical Information, Note I/1994Google Scholar
  26. Grundy B, Villanueva B, Wooliams JA (1998) Dynamic selection procedures for constrained inbreeding and their consequences for pedigree development. Genet Res Camb 92(2):159–168CrossRefGoogle Scholar
  27. Grundy B, Villaneuva B, Woolliams JA (2000) Dynamic selection for maximizing response with constrained inbreeding in schemes with overlapping generations. Anim Sci 70(3):373–382CrossRefGoogle Scholar
  28. Gunia M, Mandonnet N, Arquet R et al (2012) Economic values of body weight, reproduction and parasite resistance traits for a Creole goat breeding goal. Animal 7(1):22–33PubMedCrossRefGoogle Scholar
  29. Haenlein GFW (2004) Goat milk in human nutrition. Small Rum Res 51(2):155–163CrossRefGoogle Scholar
  30. Hall BK, Hallgrímsson B (2008) Strickberger’s Evolution, 4th edn. John Bartlett Publishers, Sudbury, Massachusetts, USGoogle Scholar
  31. Hazel LN (1943) The genetic basis for constructing selection indexes. Genetics 28:476–490PubMedPubMedCentralGoogle Scholar
  32. Henderson CR (1994) Applications of linear models in animal breeding. University of Guelph, Ontario, Canada, Third printingGoogle Scholar
  33. Kinghorn BP, Simm G (1999) Genetic improvement of beef cattle. In: Fries R, Ruvinsky A (eds) Genetics of cattle. CAB International, Wallingford, Oxon, UKGoogle Scholar
  34. Koots KR, Gibson JP (1998) Economic values for beef production traits from a herd level bioeconomic model. Can J Anim Sci 78(1):29–45CrossRefGoogle Scholar
  35. Leroux C, Martin P, Mahe MF et al (1990) Restriction-fragment-length-polymorphism identification of goat alpha-S1-casein alleles—a potential tool in selection of individuals carrying alleles associated with a high-level protein-synthesis. Anim Genet 21(4):341–351PubMedCrossRefGoogle Scholar
  36. Lopes MS, Bovenhuis H, van Son M et al (2017) Using markers with large effect in genetic and genomic predictions. J Anim Sci 95(1):59–71PubMedGoogle Scholar
  37. Martin P, Palhière I, Maroteau C et al (2017) A genome scan for milk production traits in dairy goats reveals two new mutations in Dgat1 reducing milk fat content. Sci Rep 7(1):1872.  https://doi.org/10.1038/s41598-017-02052-0 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Martin P, Tosser-Klopp G, Rupp R (2016) Heritability and genome-wide association mapping for supernumerary teats in French Alpine and Saanen dairy goats. J Dairy Sci 99(11):8891–8900PubMedCrossRefGoogle Scholar
  39. Matukumalli LK, Lawley CT, Schnabel RD et al (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4(4):e5350.  https://doi.org/10.1371/journal.pone.0005350 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Mavrogenis AP (1995) Breeding systems, selection strategies for sheep improvement in Cyprus. Options Mediterraneénnes, vol 2, CIHEAM, Paris, FranceGoogle Scholar
  41. Ménissier F (1988) La sélection des races bovines à viande spécialisées en France. 3ème Cong. Mond. Reprod. Sél. Ovins et Bovins à viande, 2:215–236. Paris, FranceGoogle Scholar
  42. Meuwissen TH (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75(4):934–940PubMedCrossRefGoogle Scholar
  43. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829PubMedPubMedCentralGoogle Scholar
  44. Meuwissen TH, Sonesson AK (1998) Maximizing the response of selection with a predefined rate of inbreeding: overlapping generations. J Anim Sci 76(10):2575–2583PubMedCrossRefGoogle Scholar
  45. Miranda-de la Lama GC, Mattiello S (2010) The importance of social behaviour for goat welfare in livestock farming. Small Rum Res 90(1–3):1–10CrossRefGoogle Scholar
  46. Morand-Fehr P (1991) Goat nutrition. Pudoc Wageningen, Wageningen, The NetherlandsGoogle Scholar
  47. Mrode RA (1996) Linear models for the prediction of animal breeding values. CAB International, Oxon, UKGoogle Scholar
  48. Mueller JP (2006) Breeding and conservation programs with local communities. FAOWAAP expert meeting “Sustainable Utlilization of Animal Genetic Resources”, Ferentillo, Italy, 2–4 July 2006. Technical communication No PA 489Google Scholar
  49. Muir WM (2000) The interaction of selection intensity, inbreeding depression, and random genetic drift on short and long-term response to selection: results using finite locus and finite population size models incorporating directional dominance. J Anim Sci 79 (E-Suppl. 1):1–11Google Scholar
  50. Neopane SP, Pokharel PK (2005) Genetic gain in selected herds of Khari goats over generations in Nepal. AGTR Case Study. Nairobi, Kenya. Available at: ILRI. http://hdl.handle.net/10568/3577
  51. Oldenbroek K, van der Waaij L (2014) Textbook Animal Breeding and Genetics for BSc students. Centre for Genetic Resources and Animal Breeding and Genomics Group, Wageningen University and Research Centre, The Netherlands. Avaible at: http://www.wur.nl/upload_mm/d/b/b/614bcc19-036f-434e-9d40-609364ab26da_Textbook%20Animal%20Breeding%20and%20Genetics-v17-20151122_1057.pdf
  52. Onzima RB, Gizaw S, Kugonza DR, et al (2017) Production system and participatory identification of breeding objective traits for indigenous goat breeds of Uganda. Small Rum Res. (In Press, Corrected Proof) https://dx.doi.org/10.1016/j.smallrumres.2017.07.007
  53. Pailhoux E, Vigier B, Chaffaux S et al (2001) A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 29(4):453–458PubMedCrossRefGoogle Scholar
  54. Pellerin AN, Browning R Jr (2012) Comparison of Boer, Kiko, and Spanish meat goat does for stayability and cumulative reproductive output in the humid subtropical southeastern United States. BMC Vet Res 8:136.  https://doi.org/10.1186/1746-6148-8-136 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Perez-Enciso M, Rincón JC, Legarra A (2015) Sequence- vs. Chip-assisted genomic selection: accurate biological information is advised. Genet Sel Evol 47:43.  https://doi.org/10.1186/s12711-015-0117-5 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Philipsson J, Rege JEO, Zonabend E, et al (2011) Sustainable breeding programmes for tropical farming systems In: Ojango JM, Malmfors B, Okeyo AM (eds) Animal genetics training resource, version 3, 2011. International Livestock Research Institute, Nairobi, Kenya, and Swedish University of Agricultural Sciences, Uppsala, SwedenGoogle Scholar
  57. Phocas F, Belloc C, Bidanel J et al (2016) Review: Towards the agroecological management of ruminants, pigs and poultry through the development of sustainable breeding programmes. II. Breeding strategies. Animal 10(11):1760–1769PubMedCrossRefGoogle Scholar
  58. Ponzoni RW, Newman S (1989) Developing breeding objectives for Australian beef cattle production. Anim Prod 49(1):35–47CrossRefGoogle Scholar
  59. Quinton M, Smith C, Goddard ME (1992) Comparison of selection methods at the same level of inbreeding. J Anim Sci 70(4):1060–1067PubMedCrossRefGoogle Scholar
  60. Ramos AM, Crooijmans RP, Affara NA et al (2009) Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One 4(8):e6524.  https://doi.org/10.1371/journal.pone.0006524 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Roden JA (1994) Review of the theory of open nucleus breeding system. Anim Breed Abstr 62:151–157Google Scholar
  62. Ronningen K, Van Vleck LD (1985) Selection index theory with practical applications. In: Chapman AB (ed) General and quantitative genetics. Elsevier Science Publishers, Amsterdam, The NetherlandGoogle Scholar
  63. Rupp R, Mucha S, Larroque H et al (2016) Genomic application in sheep and goat breeding. Animal Front 6(1):39–44CrossRefGoogle Scholar
  64. Sejian V, Hyder I, Ezeji T, et al (2015) Global warming: role of livestock. In: Sejian V, Gaughan J, Baumgard L, et al (eds) Climate change impact on livestock: adaptation and mitigation. Springer Publisher, New Delhi, India, pp 141–170Google Scholar
  65. Shumbusho F, Raoul J, Astruc JM et al (2013) Potential benefits of genomic selection on genetic gain of small ruminant breeding programs. J Anim Sci 91(8):3644–3657PubMedCrossRefGoogle Scholar
  66. Shumbusho F, Raoul J, Astruc JM et al (2016) Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program. Animal 10(6):1033–1041PubMedCrossRefGoogle Scholar
  67. Simm G (1998) Genetic improvement of cattle and sheep. Farming Press—Miller Freedman UK Ltd., Ipswich, UKGoogle Scholar
  68. Sonesson AK, Woolliams JA, Meuwissen TH (2012) Genomic selection requires genomic control of inbreeding. Genet Sel Evol 44:27.  https://doi.org/10.1186/1297-9686-44-27 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sorensen AC, Sorensen MK, Berg P (2005) Inbreeding in Danish dairy cattle breeds. J Dairy Sci 88(5):1865–1872PubMedCrossRefGoogle Scholar
  70. United Nations (2017) Revision of world population prospect. Available at: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
  71. Van der Steen HAM, Prall GFW, Plastow GS (2005) Application of genomics to the pork industry. J Anim Sci 83(E. Suppl.):E1–E8Google Scholar
  72. Van der Werf JHJ (2000) Livestock straight breeding system structures for the sustainable intensification of extensive grazing systems. In: Galal S, Boyazoglu J, Hammond K (eds) Workshop on developing breeding strategies for lower input animal production environments ICAR Technical Series, vol 3, pp 105–178Google Scholar
  73. Verrier E, Colleau JJ, Foulley JL (1994) Le modèle animal est-il optimal a moyen terme? In: Foulley JL, Molénat M (eds) Séminaire modèle animal, 26-29 septembre 1994. La-Colle-sur-Loup, France, pp 57–66Google Scholar
  74. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era– concepts and misconceptions. Nat Rev Genet 9(4):255–266PubMedCrossRefGoogle Scholar
  75. Weigel KA (2001) Controlling inbreeding in modern breeding programs. J Dairy Sci 84 (E. Suppl.):E177–E184Google Scholar
  76. Wolc A, Zhao HH, Arango J et al (2015) Response and inbreeding from a genomic selection experiment in layer chickens. Genet Selec Evolution 47:59.  https://doi.org/10.1186/s12711-015-0133-5 CrossRefGoogle Scholar
  77. Yang J, Benyamin B, McEvoy BP et al (2010) Common SNPs explain a large proportion of heritability for human height. Nat Genet 42(7):565–569PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nuno Carolino
    • 1
    • 2
    • 3
  • António Vicente
    • 3
    • 4
  • Inês Carolino
    • 1
  1. 1.Instituto Nacional de Investigação Agrária e VeterináriaVale de SantarémPortugal
  2. 2.Escola Universitária Vasco da GamaCoimbraPortugal
  3. 3.CIISA—Faculdade de Medicina VeterináriaUniversidade de LisboaLisbonPortugal
  4. 4.Escola Superior Agrária do Instituto Politécnico de SantarémSantarémPortugal

Personalised recommendations