Reproductive Strategies for Goat Production in Adverse Environments



Reproductive patterns in goats can be artificially manipulated by different strategies based in the control of endocrine system by the exogenous administration of hormonal compounds, or by manipulation of specific environmental factors. This chapter summarizes the main information on the possible on-farm applications of low cost-demanding techniques, as well as on advanced reproductive technologies that have greater impact on goat production systems. The recent improvement in the knowledge and manipulation of ovarian follicular dynamics in goats is the basis for the development of novel pharmacological protocols for fixed-time artificial insemination with which high pregnancy rate without estrus detection can be achieved. Alternatively, social-environmental factors can be managed to induce ovulations in anestrous; e.g., the male effect, female effect, or light control regimens, which require estrus detection or natural mating. In addition, the chapter updates the knowledge on advanced reproductive technologies related to superovulation for in vivo-derived embryos and to follicular aspiration for in vitro-produced embryos. Both technologies have been strongly improved in the last years and currently may be applied in farm conditions with positive results. Altogether, these strategies conform a complete toolbox for the management of goat production in different conditions, offering one tool for each need.


  1. Acevedo L, Viera MN, Beracochea F et al (2015) Tratamientos con gonadotrofina coriónica equina (eCG) en chivos durante la estación no reproductiva: I. efectos sobre el semen fresco. 11º Simposio Internacional de Reproducción Animal, julio, Córdoba, ArgentinaGoogle Scholar
  2. Alvarez L, Ducoing A, Zarco L et al (1999) Conducta estral, concentraciones de LH y función lútea en cabras en anestro estacional inducidas a ciclar mediante el contacto con cabras en estro. Vet Méx 30(1):25–31Google Scholar
  3. Alvarez L, Gamboa D, Zarco L et al (2013) Response to the buck effect in goats primed with CIDRs, previously used CIDRs, or previously used autoclaved CIDRs during the non-breeding season. Livest Sci 155(2–3):459–462CrossRefGoogle Scholar
  4. Alvarez L, Martin GB, Galindo F et al (2003) Social dominance of female goats affects their response to the male effect. Appl Anim Behav Sci 84(2):119–126CrossRefGoogle Scholar
  5. Álvarez-Ramírez L, Zarco-Quintero LA (2001) Los fenómenos de bioestimulación sexual en ovejas y cabras. Vet Méx 32(2):117–129Google Scholar
  6. Alvarez L, Zarco L, Galindo F et al (2007) Social rank and response to the “male effect” in the Australian Cashmere goat. Anim Reprod Sci 102(3–4):258–266CrossRefPubMedGoogle Scholar
  7. Baldassarre H, de Matos DG, Furnus CC et al (1994) Technique for efficient recovery of sheep oocytes by laparoscopic folliculocentesis. Anim Reprod Sci 35(1–2):145–150CrossRefGoogle Scholar
  8. Baldassarre H, Wang B, Kafidi N et al (2002) Advances in the production and propagation of transgenic goats using laparoscopic ovum pick-up and in vitro embryo production technologies. Theriogenology 57(1):275–284CrossRefPubMedGoogle Scholar
  9. Bronson FH (1989) Mammalian reproductive biology. The University of Chicago Press, ChicagoGoogle Scholar
  10. Chemineau P (1983) Effect on oestrus and ovulation of exposing Creole goats to the male at three times of the year. J Reprod Fertil 67(1):65–72CrossRefPubMedGoogle Scholar
  11. Chemineau P (1987) Possibilities for using bucks to stimulate ovarian and oestrus cycles in anovulatory goats. A review. Livest Sci 17:135–147CrossRefGoogle Scholar
  12. Chemineau P, Delgadillo JA (1993) Reproductive neuroendocrinology in goats. Rev Client FCV-LUZ 3:113–121Google Scholar
  13. Chemineau P, Malpaux B, Delgadillo JA et al (1992) Control of sheep and goat reproduction: use of light and melatonin. Anim Reprod Sci 30(1–3):157–184CrossRefGoogle Scholar
  14. Chemineau P, Martin GB, Saumande J et al (1988) Seasonal and hormonal control of pulsatile LH secretion in the dairy goat (Capra hircus). J Reprod Fertil 83:91–98CrossRefPubMedGoogle Scholar
  15. Chemineau P, Normant E, Ravault JP et al (1986) Induction and persistence of pituitary and ovarian activity in the out-of-season lactating dairy goat after a treatment combining a skeleton, and the male effect. J Reprod Fertil 78:497–504CrossRefPubMedGoogle Scholar
  16. Cognie Y, Poulin N, Locatelli Y et al (2004) State-of-the-art production, conservation and transfer of in-vitro-produced embryos in small ruminants. Reprod Fertil Dev 16(4):437–445CrossRefPubMedGoogle Scholar
  17. Corteel JM, Leboeuf B, Baril G (1988) Artificial breeding of goats and kids induced to ovulate with hormons outside the breeding season. Small Rumin Res 1(1):19–35CrossRefGoogle Scholar
  18. Corteel JM (1975) The use of progestagens to control the oestrous cycle of the dairy goat. Ann Biol Anim Bioch Biophys 15(2):353–363CrossRefGoogle Scholar
  19. Côté SD, Festa-Bianchet M (2001) Reproductive success in female mountain goats: the influence of maternal age and social rank. Anim Behav 62(1):173–181CrossRefGoogle Scholar
  20. Delgadillo JA, Flores JA, Duarte G et al (2014) Out-of-season control of reproduction in subtropical goats without exogenous hormonal treatments. Small Rum Res 121(1):7–11CrossRefGoogle Scholar
  21. dos Santos Neto PC, Cuadro F, Barrera N et al (2017) Embryo survival and birth rate after minimum volume vitrification or slow freezing of in vivo and in vitro produced ovine embryos. Cryobiology (submitted)Google Scholar
  22. dos Santos Neto PC, Vilariño M, Barrera N et al (2015) Cryotolerance of Day 2 or Day 6 in vitro produced ovine embryos after vitrification by Cryotop or Spatula methods. Cryobiology 70(1):17–22CrossRefPubMedGoogle Scholar
  23. Flores JA, Véliz FG, Pérez-Villanueva JA et al (2000) Male reproductive condition is the limiting factor of efficiency in the male effect during seasonal anestrus in female goats. Biol Reprod 62(5):1409–1414CrossRefPubMedGoogle Scholar
  24. Fonseca JF, Souza-Fabjan JMG, Oliveira MEF et al (2016) Nonsurgical embryo recovery and transfer in sheep and goats. Theriogenology 86(1):144–151CrossRefPubMedGoogle Scholar
  25. Gateff S, Leboeuf B, Desemery C et al (2003) Maîtriser la reproduction des chevrettes à contresaison, quels résultats avec le traitement lumineux et l’effet bouc? Renc Rech Ruminants 10:123–126Google Scholar
  26. Giriboni J, Lacuesta L, Ungerfeld R (2017) Continuous contact with females in estrus throughout the year enhances testicular activity and improves seminal traits of male goats. Theriogenology 87(1):284–289CrossRefPubMedGoogle Scholar
  27. Gonzalez-Bulnes A, Carrizosa JA, Urrutia B et al (2006) Oestrous behaviour and development of preovulatory follicles in goats induced to ovulate using the male effect with and without progesterone priming. Reprod Fertil Dev 18(7):745–750CrossRefPubMedGoogle Scholar
  28. Hogan N, Waas JR, Verkerk GA (2004) Can female-female stimulation of breeding condition occur in dairy goats? Small Rum Res 55(1–3):21–27CrossRefGoogle Scholar
  29. Kastelic JP, Ginther OJ (1991) Factors affecting the origin of the ovulatory follicle in heifers with induced luteolysis. Anim Reprod Sci 26(1–2):13–24CrossRefGoogle Scholar
  30. Lacuesta L, Orihuela A, Ungerfeld R (2015) Reproductive development of male goat kids reared with or without permanent contact with adult females until 10 months of age. Theriogenology 83(1):139–143CrossRefPubMedGoogle Scholar
  31. Lincoln GA, Short RV (1980) Seasonal breeding: Nature’s contraceptive. Recent Prog Horm Res 36:1–52PubMedGoogle Scholar
  32. Malpaux B, Thiéry JC, Chemineau P (1999) Melatonin and the seasonal control of reproduction. Reprod Nutr Dev 39(3):355–366Google Scholar
  33. Medan MS, Watanabe G, Sasaki K et al (2005) Follicular and hormonal dynamics during the estrous cycle in goats. J Reprod Dev 51(4):455–463CrossRefPubMedGoogle Scholar
  34. Menchaca A, Anegon I, Whitelaw CB et al (2016a) New insights and current tools for genetically engineered (GE) sheep and goats. Theriogenology 86(1):160–169CrossRefPubMedGoogle Scholar
  35. Menchaca A, Rubianes E (2004) New treatments associated with timed artificial insemination in small ruminants. Reprod Fertil Dev 16(4):403–413CrossRefPubMedGoogle Scholar
  36. Menchaca A, Barrera N, dos Santos Neto PC et al (2016b) Advances and limitations of in vitro embryo production in sheep and goats. Anim Reprod 13(3):273–278CrossRefGoogle Scholar
  37. Menchaca A, Rubianes E (2007) Pregnancy rate obtained with short-term protocol for timed artificial insemination in goats. Reprod Domest Anim 42(6):590–593CrossRefPubMedGoogle Scholar
  38. Menchaca A, Vilariño M, Crispo M et al (2010) New approaches to superovulation and embryo transfer in small ruminants. Reprod Fertil Dev 22(1):113–118CrossRefPubMedGoogle Scholar
  39. Moore NW, Eppleston J (1979) The control of oestrus, ovulation and fertility in the Angora goat. Aust J Agric Res 30(5):965–972CrossRefGoogle Scholar
  40. Morató R, Romaguera R, Izquierdo D et al (2011) Vitrification of in vitro produced goat blastocysts: Effects of oocyte donor age and development stage. Cryobiology 63(3):240–244CrossRefPubMedGoogle Scholar
  41. Murphy BD, Martinuk SD (1991) Equine chorionic gonadotropin. Endocr Rev 12(1):27–44CrossRefPubMedGoogle Scholar
  42. Notter DR (2001) Opportunities to reduce seasonality of breeding in sheep by selection. Sheep Goat Res J 17(3):20–32Google Scholar
  43. Ott RS, Nelson DR, Hixon JE (1980) Effect of the presence of the male on initiation of estrous cycle activity of goats. Theriogenology 13(2):183–190CrossRefPubMedGoogle Scholar
  44. Restall BJ (1992) Seasonal variation in reproductive activity in Australian goats. Anim Reprod Sci 27(4):305–318CrossRefGoogle Scholar
  45. Rubianes E, Menchaca A (2003) The pattern and manipulation of ovarian follicular growth in goats. Anim Reprod Sci 78(3–4):271–287CrossRefPubMedGoogle Scholar
  46. Shelton M (1980) Goats: influence of various exteroceptive factors on initiation of oestrous and ovulation. Int. Goat Sheep Res 1:156–162Google Scholar
  47. Tervit HR, Smith JF, McGowan LT et al (1992) Laparoscopic recovery of oocytes from sheep. Proc Aust Soc Reprod Biol 24:26Google Scholar
  48. Ungerfeld R, Clemente N, Bonjour L et al (2014) Equine Chorionic Gonadotrophin administration to rams improves their effectiveness to stimulate anoestrous ewes (the “ram effect”). Anim Reprod Sci 149(3–4):194–198CrossRefPubMedGoogle Scholar
  49. Ungerfeld R, González-Pensado S, Dago AL et al (2007) Social dominance of female dairy goats and response to oestrous synchronisation and superovulatory treatments. Appl Anim Behav Sci 105(1–3):115–121CrossRefGoogle Scholar
  50. Veliz FG, Moreno S, Duarte G et al (2002) Male effect in seasonally anovulatory lactating goats depends on the presence of sexually active bucks, but not estrous females. Anim Reprod Sci 72(3–4):197–207CrossRefPubMedGoogle Scholar
  51. Viera MN, Acevedo L, Beracochea F et al (2015) Tratamientos con gonadotrofina coriónica equina (eCG) en chivos durante la estación no reproductiva: II. Efectos sobre la criopreservacion seminal. 11º Simposio Internacional de Reproducción Animal, julio, Córdoba, ArgentinaGoogle Scholar
  52. Vincent JN, McQuown EC, Notter DR (2000) Duration of the seasonal anestrus in sheep selected for fertility in a fall-lambing system. J Anim Sci 78(5):1149–1154CrossRefPubMedGoogle Scholar
  53. Viñoles C, Rubianes E (1998) Origin of preovulatory follicles after induced luteolysis during the early luteal phase in ewes. Can J Anim Sci 78(3):429–431CrossRefGoogle Scholar
  54. Walkden-Brown SW, Martin GB, Restall BJ (1999) Role of male–female interaction in regulating reproduction in sheep and goats. J Reprod Fertil Suppl 54:243–257PubMedGoogle Scholar
  55. Walkden-Brown SW, Restall BJ, Henniawati (1993a) The male effect of the Australian cashmere goat. 2. Role of olfactory cues from the male. Anim Reprod Sci 32(1–2):55-67Google Scholar
  56. Walkden-Brown, SW, Restall BJ, Henniawati (1993b) The male effect of the Australian cashmere goat. 3. Enhancement with buck nutrition and use of oestrous females. Anim Reprod Sci (1–2):69-84Google Scholar
  57. Zerbe P, Clauss M, Cordon D et al (2012) Reproductiive in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history. Biol Rev 87(4):965–990CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Instituto de Reproducción Animal UruguayFundación IRAUyMontevideoUruguay
  2. 2.Departamento de Fisiología, Facultad de VeterinariaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations