Advertisement

Conservation of Goat Populations from Southwestern Europe Based on Molecular Diversity Criteria

  • Catarina Ginja
  • Oscar Cortés
  • Luís T. Gama
  • Juan V. Delgado
  • Marcel Amills
  • Carolina Bruno de Sousa
  • Javier Cañón
  • Juan Capote
  • Susana Dunner
  • Ainhoa Ferrando
  • Mayra Gómez Carpio
  • Mariano Gómez
  • Jordi Jordana
  • Vincenzo Landi
  • Arianna Manunza
  • Inmaculada Martin-Burriel
  • Agueda Pons Barro
  • Clementina Rodellar
  • Fátima Santos-Silva
  • Natalia Sevane
  • Oriol Vidal
  • Pilar Zaragoza
  • Amparo M. Martínez
Chapter

Abstract

Goat farming plays a key role in agricultural activity and in maintaining forest lands in Southwestern Europe. Remarkably, the Iberian Peninsula represents nearly 25% of the European goat census. Goat husbandry is often associated with low input production systems and uses selective breeding programs, which are less advanced than those employed in other livestock. Native goat breeds are very well adapted to produce in marginal areas under extensive conditions. Loss of their genetic diversity could have important economic, ecological and scientific implications as well as social consequences. Several methodologies have been developed to preserve the genetic diversity of single populations, but additional problems arise when a group of breeds, i.e., subpopulations, is considered in conservation programs. The conservation priority of a breed depends on its contribution to the overall genetic diversity of the species, in terms of the intrinsic genetic variation that it harbors and also of its relationship with other breeds. However, the estimation of the contributions of each of these two components to overall genetic diversity cannot be easily assessed. Besides, conservation goals in the short-term (avoidance of inbreeding) and long-term (adaptation to future environmental changes) should be considered when taking conservative decisions. A comprehensive analysis of Iberian goat breeds has been carried out to evaluate conservation priorities based on methodologies that account for within- or between-breed genetic diversity, or combinations of both. Based on genetic distinctiveness, breeds such as Palmera, Formentera, and Blanca Celtibérica were prioritized, whereas the maximum priority was assigned to Florida, Pirenaica, Retinta, and Moncaína breeds when focusing on within-breed diversity. Overall, combined approaches showed very little variation among breeds reflecting a history of extensive gene flow, partly due to transhumance and recent divergence. The main conclusion of our study is that these statistical analyses are useful, but conservation decisions must take into account other factors in addition to strict genetic diversity classification.

Notes

Acknowledgements

The authors wish to express thanks to breeder associations and research groups kindly providing biological samples used in this study. Members of the CYTED XII-H and CONBIAND networks are acknowledged for their valuable cooperation throughout the years. We also acknowledge Irene Ureña for contributing information on the wild goat populations from the Iberian Peninsula. This study has been partially supported by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) RZ2004-00037-00-00, RZ2006- 00005-C02-00, RZ2007-00005-C02-01 and RZ2007-00005-C02-02 projects. CG was supported by a contract grant from the Fundação para a Ciência e a Tecnologia (project ARADO, IF/00866/2014), Portugal.

References

  1. Alasaad S, Fickel J, Rossi L et al (2012) Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex x domestic goat in southern Spain. Acta Vet Scand 54:56.  https://doi.org/10.1186/1751-0147-54-56 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Azor PJ, Monteagudo LV, Luque M et al (2005) Phylogenetic relationships among Spanish goats breeds. Anim Genet 36(5):423–425CrossRefPubMedGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, et al (1996–2004) GENETIX: logiciel sous Windows TM pour la génétique des populations. 4.02 edn. Laboratoire Génome, Populations, Interactions, CNRS, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  4. Bennewitz J, Kantanen J, Tapio I et al (2006) Estimation of breed contributions to present and future genetic diversity of 44 North Eurasian cattle breeds using core set diversity measures. Genet Sel Evol 38(2):201–220CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boettcher PJ, Tixier-Boichard M, Toro MA et al (2010) Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources. Anim Genet 41:64–77CrossRefPubMedGoogle Scholar
  6. Bruford MW, Ginja C, Hoffmann I et al (2015) Prospects and challenges for the conservation of farm animal genomic resources, 2015–2025. Front Genet 6:314.  https://doi.org/10.3389/Fgene.2015.00314 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bruno de Sousa C, Martínez A, Ginja C et al (2011) Genetic diversity and population structure in Portuguese goat breeds. Livest Sci 135(2–3):131–139CrossRefGoogle Scholar
  8. Caballero A, Rodriguez-Ramilo ST, Avila V et al (2010) Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 11:409–419CrossRefGoogle Scholar
  9. Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet 3:289–299CrossRefGoogle Scholar
  10. Cañon J, García D, Delgado JV et al (2011) Relative breed contributions to neutral genetic diversity of a comprehensive representation of Iberian native cattle. Animal 5(9):1323–1334CrossRefPubMedGoogle Scholar
  11. Cañon J, García D, García-Atance MA et al (2006) Geographical partitioning of goat diversity in Europe and the Middle East. Anim Genet 37(4):327–334CrossRefPubMedGoogle Scholar
  12. Carolino N, Bruno de Sousa B, Carolino I et al (2016) Biodiversidade caprina em Portugal. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, pp 57–74Google Scholar
  13. Consortium ECGD (2006) Marker-assisted conservation of European cattle breeds: an evaluation. Anim Genet 37(5):475–481CrossRefGoogle Scholar
  14. Cortes O, Martínez AM, Cañon J et al (2016) Conservation priorities of Iberoamerican pig breeds and their ancestors based on microsatellite information. Heredity 117(1):14–24CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Sierra GEF, Belmonte SA, Camacho Vallejo ME et al (2016) Biodiversidad caprina en España. In: Vargas Bayona JE, Zaragoza Martínez L, Delgado Bermejo JV et al (eds) Biodiversidad caprina Iberoamericana. Universidad Cooperativa de Colombia, Bogotá, pp 13–56CrossRefGoogle Scholar
  16. Dong Y, Zhang XL, Xie M et al (2015) Reference genome of wild goat (capra aegagrus) and sequencing of goat breeds provide insight into genic basis of goat domestication. BMC Genom 16(1):431.  https://doi.org/10.1186/S12864-015-1606-1 CrossRefGoogle Scholar
  17. Eding H, Crooijmans RP, Groenen MA et al (2002) Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet Sel Evol 34(5):613–633CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eding H, Meuwissen TH (2001) Marker-assisted estimates of between and within population kinships from genetic marker data for the construction of core sets in genetic conservation schemes. J Anim Breed Genet 118:141–159CrossRefGoogle Scholar
  19. Eding H, Meuwissen THE (2003) Linear methods to estimate kinships from genetic marker data for the construction of core sets in genetic conservation schemes. J Anim Breed Genet 120(5):289–302CrossRefGoogle Scholar
  20. Fabuel E, Barragan C, Silio L et al (2004) Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93(1):104–113CrossRefPubMedGoogle Scholar
  21. FAO (2012a) Cryoconservation of animal genetic resources. Animal production and health guide, vol 12. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  22. FAO (2012b) Draft guidelines on in vivo conservation of animal genetic resources. Comm Genet Resour Food and Agric, vol 7. Food and Agriculture Organization of the United Nations, Rome, ItalyGoogle Scholar
  23. Fernandez H, Hughes S, Vigne JD et al (2006) Divergent mtDNA lineages of goats in an Early Neolithic site, far from the initial domestication areas. Proc Natl Acad Sci USA 103(42):15375–15379CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gandini GC, Ollivier L, Danell B et al (2004) Criteria to assess the degree of endangerment of livestock breeds in Europe. Livest Prod Sci 91(1–2):173–182CrossRefGoogle Scholar
  25. García D, Corral N, Cañon J (2005) Combining inter- and intrapopulation information with the Weitzman approach to diversity conservation. J Hered 96(6):704–712CrossRefPubMedGoogle Scholar
  26. Ginja C, Gama LT, Cortés O et al (2013) Analysis of conservation priorities of Iberoamerican cattle based on autosomal microsatellite markers. Genet Select Evol 45:35.  https://doi.org/10.1186/1297-9686-45-35 CrossRefGoogle Scholar
  27. Ginja C, Gama LT, Martínez A et al (2017) Genetic diversity and patterns of population structure in Creole goats from the Americas. Anim Genet 48(3):315–329CrossRefPubMedGoogle Scholar
  28. Goudet J (2001) FSTAT a program to estimate and test gene diversities and fixation indices. Version 2.9.3. Available at: https://www2.unil.ch/popgen/softwares/fstat.htm
  29. Gutierrez JP, Royo LJ, Alvarez I et al (2005) MolKin v2.0: a computer program for genetic analysis of populations using molecular coancestry information. J Hered 96(6):718–721CrossRefPubMedGoogle Scholar
  30. Hall SJG, Lenstra JA, Deeming DC et al (2012) Prioritization based on neutral genetic diversity may fail to conserve important characteristics in cattle breeds. J Anim Breed Genet 129(3):218–225CrossRefPubMedGoogle Scholar
  31. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267CrossRefPubMedGoogle Scholar
  32. Jordana J, Goyache F, Ferrando A et al (2017) Contributions to diversity rather than basic measures of genetic diversity characterise the spreading of donkey throughout the American continent. Livest Sci 197:1–7CrossRefGoogle Scholar
  33. Langella O (1999–2002) POPULATIONS 1.2.28. 1.2.28 edn. CNRS UPR 9034, FranceGoogle Scholar
  34. Luikart G, Gielly L, Excoffier L et al (2001) Multiple maternal origins and weak phylogeographic structure in domestic goats. Proc Natl Acad Sci USA 98(10):5927–5932CrossRefPubMedPubMedCentralGoogle Scholar
  35. Manzano P, Casas R (2010) Past, present and future of trashumancia in Spain: nomadism in a developed country. Pastoralism 1:72–90Google Scholar
  36. Martínez A, Manunza A, Delgado JV et al (2016) Detecting the existence of gene flow between Spanish and North African goats through a coalescent approach. Sci Rep 6:38935.  https://doi.org/10.1038/srep38935 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martínez AM, Acosta J, Vega-Pla JL et al (2006) Analysis of the genetic structure of the canary goat populations using microsatellites. Livest Sci 102:140–145CrossRefGoogle Scholar
  38. Martínez AM, Gama LT, Delgado JV et al (2015) The Southwestern fringe of Europe as an important reservoir of caprine biodiversity. Genet Sel Evol 47:86.  https://doi.org/10.1186/s12711-015-0167-8 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Medugorac I, Veit-Kensch CE, Ramljak J et al (2011) Conservation priorities of genetic diversity in domesticated metapopulations: a study in taurine cattle breeds. Ecol Evol 1(3):408–420CrossRefPubMedPubMedCentralGoogle Scholar
  40. Meuwissen T (2009) Towards consensus on how to measure neutral genetic diversity? J Anim Breed Genet 126(5):333–334CrossRefPubMedGoogle Scholar
  41. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York, NY, USAGoogle Scholar
  42. Notter DR (1999) The importance of genetic diversity in livestock populations of the future. J Anim Sci 77(1):61–69CrossRefPubMedGoogle Scholar
  43. Ollivier L, Foulley JL (2005) Aggregate diversity: new approach combining within- and between-breed genetic diversity. Livest Prod Sci 95:247–254CrossRefGoogle Scholar
  44. Pereira F, Pereira L, Van Asch B et al (2005) The mtDNA catalogue of all Portuguese autochthonous goat (Capra hircus) breeds: high diversity of female lineages at the western fringe of European distribution. Mol Ecol 14(8):2313–2318CrossRefPubMedGoogle Scholar
  45. Pereira F, Queirós S, Gusmão L et al (2009) Tracing the history of goat pastoralism: new clues from mitochondrial and Y chromosome DNA in North Africa. Mol Biol Evol 26(12):2765–2773CrossRefPubMedGoogle Scholar
  46. Piyasatian N, Kinghorn BP (2003) Balancing genetic diversity, genetic merit and population viability in conservation programmes. J Anim Breed Genet 120:137–149CrossRefGoogle Scholar
  47. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105(3):767–779PubMedPubMedCentralGoogle Scholar
  48. Ruane J (1999) A critical review of the value of genetic distance studies in conservation of animal genetic resources. J Anim Breed Genet 116(5):317–323CrossRefGoogle Scholar
  49. Ruane J (2000) A framework for prioritizing domestic animal breeds for conservation purposes at the national level: a Norwegian case study. Conserv Biol 14(5):1385–1393CrossRefGoogle Scholar
  50. Song S, Yao N, Yang M et al (2016) Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Capra hircus). BMC Genom 17:122.  https://doi.org/10.1186/s12864-016-2449-0 CrossRefGoogle Scholar
  51. Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Philos Trans R Soc Lond B Biol Sci 360(1459):1367–1378CrossRefPubMedPubMedCentralGoogle Scholar
  52. Toro MA, Fernandez J, Caballero A (2009) Molecular characterization of breeds and its use in conservation. Livest Sci 120(3):174–195CrossRefGoogle Scholar
  53. Wang XL, Liu J, Zhou GX et al (2016) Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci Rep 6:38932.  https://doi.org/10.1038/srep38932 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):1358–1370PubMedGoogle Scholar
  55. Weitzman ML (1992) On diversity. Q J Econ 107(2):363–405CrossRefGoogle Scholar
  56. Zeder MA (2008) Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc Natl Acad Sci USA 105(33):11597–11604CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Catarina Ginja
    • 1
  • Oscar Cortés
    • 2
  • Luís T. Gama
    • 3
  • Juan V. Delgado
    • 4
  • Marcel Amills
    • 5
  • Carolina Bruno de Sousa
    • 6
  • Javier Cañón
    • 2
  • Juan Capote
    • 7
  • Susana Dunner
    • 2
  • Ainhoa Ferrando
    • 5
  • Mayra Gómez Carpio
    • 4
  • Mariano Gómez
    • 8
  • Jordi Jordana
    • 5
  • Vincenzo Landi
    • 4
  • Arianna Manunza
    • 5
  • Inmaculada Martin-Burriel
    • 9
  • Agueda Pons Barro
    • 10
  • Clementina Rodellar
    • 9
  • Fátima Santos-Silva
    • 11
  • Natalia Sevane
    • 2
  • Oriol Vidal
    • 12
  • Pilar Zaragoza
    • 9
  • Amparo M. Martínez
    • 4
  1. 1.CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
  2. 2.Departamento de Producción AnimalUniversidad Complutense de MadridMadridSpain
  3. 3.CIISA, Faculdade de Medicina VeterináriaUniversidade de LisboaLisbonPortugal
  4. 4.Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
  5. 5.Department of Animal Genetics, Center for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB)Universitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  6. 6.Centro de Ciências do MarUniversidade do AlgarveFaroPortugal
  7. 7.Instituto Canario de Investigaciones Agrarias, La LagunaTenerifeSpain
  8. 8.Servicio de Ganadería, Diputación Foral de BizkaiaBilbaoSpain
  9. 9.Laboratorio de Genética Bioquímica, Facultad de Veterinaria, IA2Universidad de ZaragozaZaragozaSpain
  10. 10.SEMILLA EPE, Servei de Millora Agraria I PesqueraPalma, Mallorca, Islas BalearesSpain
  11. 11.INIAV, Instituto Nacional de Investigação Agrária e VeterináriaVale de SantarémPortugal
  12. 12.Departament de BiologiaUniversitat de GironaGironaSpain

Personalised recommendations