Skip to main content

Understanding Mastitis in Goats (I): Etiopathophysiological Particularities

  • Chapter
  • First Online:
Sustainable Goat Production in Adverse Environments: Volume I

Abstract

Mastitis represents one major constraint in dairy goat farms implicating adverse effects on milk yield and composition and, in some cases, public health constraints. Intramammary infection, the principal cause of mastitis, can reach high prevalence in dairy goat herds, commonly more than 30%. Coagulase-negative staphylococci and coagulase-positive staphylococci, with emphasis for Staphylococcus aureus, are the major bacterial species related with in intramammary infection. Milk pathogens overtake anatomical, physiological, and immunological local defenses of the mammary glands. However, some enzootic systemic disease, such as contagious agalaxia, among others, with systemic tropism for the mammary gland, can have a significant impact on the milk production and quality. At immune level, neutrophils play a major role in the healthy and infected mammary gland representing 45–75% of total leucocyte counts in milk. Apparently, the threshold for significant neutrophils increase is 700,000 cells/ml. Moreover, the continuous renewal of epithelial cells from apocrine glands, which have phagocytosis cytokine production properties, improves significantly the somatic cells in milk. All these topics are discussed in the present chapter providing key points to improve the udder health status in goats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albenzio M, Caroprese M (2011) Differential leukocyte count for ewe milk with low and high somatic cell count. J Dairy Res 78:43–48

    Article  CAS  PubMed  Google Scholar 

  • Albenzio M, Santillo A, Kelly AL et al (2015) Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts. J Dairy Sci 98(11):7587–7594

    Google Scholar 

  • Álvarez-Suárez ME, Otero A, García-López ML et al (2015) Microbiological examination of bulk tank goat’s milk in the Castilla y León region in Northern Spain. J Food Prot 78(12):2227–2232

    Article  PubMed  Google Scholar 

  • Amorena B, Perez M (1998) Dinamica molecular y celular en la defensa inmune de la glandula mamária caprina. Ovis 54:69–82

    Google Scholar 

  • Amores J, Sánchez A, Gómez-Martín A et al (2012) Surveillance of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in dairy goat herds. Small Rumin Res 102:89–93

    Article  Google Scholar 

  • Andrews RJ, Kitchen BJ, Kwee WS et al (1983) Relationship between individual cow somatic cell counts and the mastitis infection status of the udder. Aust J Dairy Technol 38:71–74

    Google Scholar 

  • Atabai K, Sheppard D, Werb Z (2007) Roles of the innate immune system in mammary gland remodeling during involution. J. Mammary Gland Biol 12:37–45

    Article  Google Scholar 

  • Bagnicka E, Winnicka A, Jóźwik A et al (2011) Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin Res 100(1):72–77

    Article  Google Scholar 

  • Baumert A, Bruckmaier RM, Wellnitz O (2009) Cell population, viability, and some key immunomodulatory molecules in different milk somatic cell samples in dairy cows. J Dairy Res 76(3):356–364

    Article  CAS  PubMed  Google Scholar 

  • Bazan R, Cervantes E, Salas G et al (2009) Prevalencia de mastitis subclínicas en cabras lecheras en Michoacán. México Revista Científica 19(4):334–338

    Google Scholar 

  • Bergonier D, Berthelot X (2008) Mycoplasmoses des petits ruminants: le syndrome de l’agalactie contagieuse. Bull Acad Vét Fr 161(2):167–177

    Article  Google Scholar 

  • Bergonier D, Blanc M-C, Fleury P et al (1997) Les mammites des ovins et des caprins laitiers: étiologie, épidémiologie, contrôle. Renc Rech Rum 4:251–260

    Google Scholar 

  • Bergonier D, de Crémoux R, Rupp R et al (2003) Mastitis of dairy small ruminants. Vet Res 34:689–716

    Article  PubMed  Google Scholar 

  • Blagitz MG, Souza FN, Gomes V et al (2011) Apoptosis and necrosis of polymorphonuclear leukocytes in goat milk with high and low somatic cell counts. Small Rumin Res 100:67–71

    Article  Google Scholar 

  • Boutinaud M, Jammes H (2002) Potential uses of milk epithelial cells: a review. Reprod Nutr Dev 42 (2):133–147

    Google Scholar 

  • Brenaut P, Lefèvre L, Rau A et al (2014) Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Vet Res 45:16. https://doi.org/10.1186/1297-9716-45-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Capuco AV, Bright SA, Pankey JW et al (1992) Increased susceptibility to intramammary infection following removal of teat canal keratin. J Dairy Sci 75:2126–2130

    Article  CAS  PubMed  Google Scholar 

  • Chu C, Yu C, Lee Y et al (2012) Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Vet Res 8:39. https://doi.org/10.1186/1746-6148-8-39

    Article  PubMed  PubMed Central  Google Scholar 

  • Contreras A, Corrales JC, Sierra D et al (1995) Prevalence and aetiology of non-clinical intramammary infection in Murciano-Granadina goats. Small Rumin Res 17:71–78

    Article  Google Scholar 

  • Contreras A, Corrales JC, Sanchez A et al (1997a) Persistence of subclinical intramammary pathogens in goats throughout lactation. J Dairy Sci 80(11):2815–2819

    Article  CAS  PubMed  Google Scholar 

  • Contreras A, Sanchez A, Corrales J, et al (1997b) Concepto e importância de las mamitis caprinas. In: Mamitis caprina, Ovis (España), No. 53 (Mamitis Caprina I), pp 11–31

    Google Scholar 

  • Contreras A, Paape MJ, Miller RH (1999) Prevalence of subclinical intramammary infection caused by Staphylococcus epidermidis in a commercial dairy goat herd. Small Rum Res 31:203–208

    Article  Google Scholar 

  • Contreras A, Luengo C, Sánchez A et al (2003) The role of intramammary pathogens in dairy goats. Livestock Prod Sci 79:273–283

    Article  Google Scholar 

  • Contreras A, Sierra D, Sánchez A et al (2007) Mastitis in small ruminants. Small Rum Res 68:145–153

    Article  Google Scholar 

  • Cooray R (1996) Casein effects on the myeloperoxidase-mediated oxygen-dependent bactericidal activity of bovine neutrophils. Vet Immunol Immunopathol 51(1–2):55–65

    Article  CAS  PubMed  Google Scholar 

  • Corrales J, Contreras A., Sanchez, et al (1997) Etiologia y diagnostico microbiologico de las mamitis caprinas. Ovis 53:33–65

    Google Scholar 

  • Cortimiglia C, Bianchini V, Franco A et al (2015) Short communication: prevalence of Staphylococcus aureus and methicillin-resistant S. aureus in bulk tank milk from dairy goat farms in Northern Italy. J Dairy Sci 98(4):2307–2311

    Article  CAS  PubMed  Google Scholar 

  • Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13(1):16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doğruer G, Mk Saribay, Aslantaş O et al (2016) The prevalance, etiology and antimicrobial susceptibility of the microorganisms in subclinical mastitis in goats. Atatürk Üniversitesi Vet Bil Derg 11(2):138–145

    Google Scholar 

  • Dore S, Liciardi M, Amatiste S et al (2016) Survey on small ruminant bacterial mastitis in Italy, 2013–2014. Small Rum Res 141:91–93

    Article  Google Scholar 

  • Dulin AM, Paape MJ, Schultze WD et al (1983) Effect of parity, stage of lactation, and intramammary infection on concentration of somatic cells and cytoplasmic particles in goat milk. J Dairy Sci 66:2426–2433

    Article  CAS  PubMed  Google Scholar 

  • Ezzat Alnakip M, Quintela-Baluja M, Böhme K et al (2014) The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med 2014:659801. https://doi.org/10.1155/2014/659801

    Article  PubMed  PubMed Central  Google Scholar 

  • Fasulkov M, Karadaev M, Djabirova M (2014) Ultrasound measurements of teat structures in goats. Revue Méd Vét 165(5–6):188–192

    Google Scholar 

  • Fetherson CM, Lee C, Hartmann PE (2001) Mammary gland defense: the role of colostrums, milk and involution secretion. Adv Nutr Res 10(8):167–198

    Google Scholar 

  • Gelasakis AI, Angelidis AS, Giannakou R et al (2016) Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J Dairy Sci 99(5):3698–3708

    Article  CAS  PubMed  Google Scholar 

  • Göçmen H, Rosales RS, Ayling RD et al (2016) Comparison of PCR tests for the detection of Mycoplasma agalactiae in sheep and goats. Turk J Vet Anim Sci 40:421–427

    Article  Google Scholar 

  • Gomes V, Libera AM, Paiva M et al (2006) Effect of the stage of lactation on somatic cell counts in healthy goats (Caprae hircus) breed in Brazil. Small Rumin Res 64(1–2):30–34

    Article  Google Scholar 

  • Gonzalo C, Ariznabarreta A, Tardáguila JA et al (1998) Factores infecciosos de variación del recuento celular de la leche de oveja. Ovis 56:27–34

    Google Scholar 

  • Hibbitt KG, Craven N, Batten H (1996) Anatomy, physiology and immunology of theudder. In: Andrews AH, Blowey RH, Boyd H, et al (eds) Bovine medicine: diseases and husbandry of cattle. Blackwell, Oxford, pp 273–278

    Google Scholar 

  • Ilhan Z, Eking IH, Koltas S et al (2016) Occurrence of fungal agents in mastitis in dairy goats. J Anım Plant Scı 29(3):4691–4700

    Google Scholar 

  • Jans C, Merz A, Johler S et al (2017) East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol 65:64–73

    Article  CAS  PubMed  Google Scholar 

  • Johler S, Giannini P, Jermini M et al (2015) Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins (Basel) 7(3):997–1004

    Article  CAS  Google Scholar 

  • Kaba J, Strzałkowska N, Jóźwik A et al (2012) Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J Dairy Sci 95(4):1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Kalogridou-Vassiliadou D (1991) Mastitis-related pathogens in goat milk. Small Rum Res 4(2):203–212

    Article  Google Scholar 

  • Kehrli ME, Shuster DE (1994) Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J Dairy Sci 77:619–627

    Article  PubMed  Google Scholar 

  • Kobayashi SD, Voyich JM, DeLeo FR (2003) Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infect 5(14):1337–1344

    Article  CAS  PubMed  Google Scholar 

  • Koltas S, Ilhan Z (2016) Isolation of some aerobic bacteria and Mycoplasma spp. Van Vet J 27(2):74–78

    Google Scholar 

  • Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 312(1):63–76

    Google Scholar 

  • Le Maréchal C, Thiéry R, Vautor E et al (2011) Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Sci Techno 91:247–282

    Article  Google Scholar 

  • Leitner G, Shoshani E, Krifucks O et al (2000) Milk leukocyte population patterns in bovine udder infections of different aetiology. J Vet Med B Infect Dis Vet Public Health 47(8):581–589

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Eligulashvily R, Krifucks O et al (2003) Immune cell differentiation in mammary gland tissues and milk of cows chronically infected with Staphylococcus aureus. J Vet Med B Infect Dis Vet Public Health 50(1):45–52

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Merin U, Lavi Y et al (2007) Aetiology of intramammary infection and its effect on milk composition in goat flocks. J Dairy Res 74(2):186–193

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Krifucks O, Weisblit L et al (2010) The effect of caprine arthritis encephalitis virus infection on production in goats. Vet J 183:328–331

    Article  CAS  PubMed  Google Scholar 

  • Leitner G, Merin U, Krifucks O et al (2012) Effects of intra-mammary bacterial infection with coagulase negative staphylococci and stage of lactation on shedding of epithelial cells and infiltration of leukocytes into milk: comparison among cows, goats and sheep. Vet Immunol Immunopathol 147(3–4):202–210

    Article  CAS  PubMed  Google Scholar 

  • Lerondelle C, Greenland T, Jane M, Mornex JF (1995) Infection of lactating goats by mammary instillation of cell-borne caprine arthritis-encephalitis virus. J Dairy Sci 78:850–855

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wright A-DG, Yang Y et al (2017) Unique bacteria community composition and co-occurrence in the milk of different ruminants. Sci Rep 7:40950. https://doi.org/10.1038/srep40950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madureira KM, Gomes V (2010) Total and differential leukocyte counts in the milk of healthy goats, using methyl green pyronin stain and cytocentrifugation. Arquivos do Instituto Biológico 77:343–347

    Google Scholar 

  • Maisi P, Riipinen I (1991) Pathogenicity of different species of staphylococci in caprine udder. Br Vet J 147:126–132

    Article  CAS  PubMed  Google Scholar 

  • Martínez B (2000) El recuento de células somáticas en la leche de cabra, factores de variación y efecto sobre la producción y composición de la leche. Universidad Politécnica de Valencia, Spain, Tesis doctoral, p 307

    Google Scholar 

  • Matthews JG (2009) Diseases of the goat, 3rd edn. Wiley-Blackwell, pp 213–235

    Google Scholar 

  • McInnis EA, Kalanetra KM, Mills DA et al (2015) Analysis of raw goat milk microbiota: impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol 46:121–131

    Article  CAS  PubMed  Google Scholar 

  • Merin U, Silanikove N, Shapiro F et al (2004) Changes in milk composition as affected by subclinical mastitis in sheep and goats. S Afr J Anım Scı 34(5):188–191

    Google Scholar 

  • Merz A, Stephan R, Johler S (2016) Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front Microbiol 7:319. https://doi.org/10.3389/fmicb.2016.00319

    Article  PubMed  PubMed Central  Google Scholar 

  • Monks J, Henson PM (2009) Differentiation of the mammary epithelial cell during involution: implications for breast cancer. J Mammary Gland Biol 14:159–170

    Article  Google Scholar 

  • Monks J, Geske FJ, Lehman L et al (2002) Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol 7:163–176

    Article  Google Scholar 

  • Muehlherr JE, Zweifel C, Corti S et al (2003) Microbiological quality of raw goat’s and ewe’s bulk-tank milk in Switzerland. J Dairy Sci 86(12):3849–3856

    Article  CAS  PubMed  Google Scholar 

  • Nord K, Adnøy T (1997). Effects of infection by caprine arthritis-encephalitis virus on milk production of goats. J Dairy Sci 80(10):2391–2397

    Google Scholar 

  • Nowicka D, Czopowicz M, Bagnicka E et al (2015) Influence of small ruminant lentivirus infection on cheese yield in goats. J Dairy Res 82(1):102–106

    Article  CAS  PubMed  Google Scholar 

  • Oliver S, Boor K, Murphy SC, Murinda SE (2009) Food safety hazards associated with consumption of raw milk. Foodborne Pathog. Dis. 6:793–806

    Article  PubMed  Google Scholar 

  • Oviedo-Boyso J, Valdez-Alarcón JJ, Cajero-Juárez M et al (2006) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54:399–409

    Article  PubMed  Google Scholar 

  • Paape MJ, Capuco AV (1997) Cellular defense mechanisms in the udder and lactation of goats. J Anim Sci 75(2):556–565

    Google Scholar 

  • Paape MJ, Wergin WP (1977) The leukocyte as a defense mechanism. J Am Vet Med Assoc 170(10 Pt 2):1214–1223

    Google Scholar 

  • Paape MJ, Bannerman DD, Zhao X et al (2003) The bovine neutrophil: structure and function in blood and milk. Vet Res 34:597–627

    Article  CAS  PubMed  Google Scholar 

  • Paape MJ, Mehrzad J, Zhao X et al (2002) Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol 7:109–121

    Article  Google Scholar 

  • Paape MJ, Poutrel B, Contreras A, Marco JC, Capuco AV (2001) Milk somatic cells and lactation in small ruminants. J Dairy Sci 84:237–244

    Google Scholar 

  • Paape MJ, Shafer-Weaver K, Capuco AV, et al. (2000) Immune surveillance of mammary gland secretion during lactation. Adv Exp Med Biol 480:259–277

    Google Scholar 

  • Paape MJ, Wiggans GR, Bannerman DD, Thomas DL, Sanders AH, Contreras A, Moroni P, Miller RH (2007) Monitoring goat and sheep milk somatic cell counts. Small Ruminant Res 68(1–2):114–125

    Google Scholar 

  • Amores J, Gómez-Martín A, Paterna, A, et al (2012a) Evaluation of PCR and culture for Mycoplasma agalactiae detection in fresh mastitic goat samples. In: Proceedings of 19th Congress of the International Organization for Mycoplasmology, Toulouse, 15–20 July

    Google Scholar 

  • Persson Y, Järnberg A, Humblot P et al (2015) Associations between Staphylococcus aureus intramammary infections and somatic cell counts in dairy goat herds. Small Rum Res 133:62–66

    Article  Google Scholar 

  • Plummer P, Plummer C (2012) Diseases of the mammary gland. In: Pugh D, Baird A (eds) Sheep and Goat Medicine. Elsevier Saunders, Missouri, pp 442–465

    Chapter  Google Scholar 

  • Poutrel B (1983) La sensibilité aux mammites: revue des facteurs liés à la vache. Ann Rech Vét 14(1):89–104

    Google Scholar 

  • Poutrel B (1984) Udder infection of goats by coagulase-negative staphylococci. Vet Microbiol 9(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Poutrel B, Lerondelle C (1983) Cell content of goat milk: California mastitis test, coulter counter, fossomatic for predicting half infection. J Dairy Sci 66:2575–2579

    Article  CAS  PubMed  Google Scholar 

  • Radostits OM, Gay CC, Blood DC, et al (2007) Veterinary medicine—a textbook of the diseases of cattle, sheep, pigs, goats and horses, 10th edn. W. B. Saunders, pp. 603–700

    Google Scholar 

  • Rainard P, Riollet C (2006) Innate immunity of the bovine mammary gland. Vet Res 37(3):369–400

    Article  CAS  PubMed  Google Scholar 

  • Rinaldi M, Moroni P, Paape MJ et al (2007) Evaluation of assays for the measurement of bovine neutrophil ROS. Vet Immunol Immunopathol 115(1–2):107–125

    Article  CAS  PubMed  Google Scholar 

  • Rovai M, Caja G, Salama A et al (2014) Identifying the major bacteria causing intramammary infections in individual milk samples of sheep and goats using traditional bacteria culturing and real-time polymerase chain reaction. J Dairy Sci 97:5393–5400

    Article  CAS  PubMed  Google Scholar 

  • Ryan DP, Greenwood PL, Nicholls PJ (1993) Effect of caprine arthritis-encephalitis virus infection on milk cell count and N-acetyl-beta-glucosaminidase activity in dairy goats. J Dairy Res 60(3):299–306

    Article  CAS  PubMed  Google Scholar 

  • Sánchez A, Corrales JC, Marco J et al (1998) Aplicacion del recuento de células somáticas para el control de las mastitis caprinas. Ovis (Mamitis caprina II) 54:37–52

    Google Scholar 

  • Sánchez A, Contreras A, Corrales JC et al (2001) Relationships between infection with caprine arthritis encephalitis virus, intramammary bacterial infection and somatic cell counts in dairy goats. Vet Rec 148(23):711–714

    Article  PubMed  Google Scholar 

  • Scaccabarozzi L, Leoni L, Ballarini A et al (2015) Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PLoS ONE 10(11):e0142973. https://doi.org/10.1371/journal.pone.0142973

    Article  PubMed  PubMed Central  Google Scholar 

  • Sladek Z, Rysanek D (2006) The role of CD14 during resolution of experimentally induced Staphylococcus aureus and Streptococcus uberis mastitis. Comp Immunol Microbiol Infect Dis 29(4):243–262

    Article  CAS  PubMed  Google Scholar 

  • Sladek Z, Rysanek D (2010) Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland. Acta Vet Scand 52:12. https://doi.org/10.1186/1751-0147-52-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith MC, Sherman DM (2009) Mammary gland and milk production. In: Goat Medicine, 2nd edn. Wiley-Blackwell, pp 647–679

    Google Scholar 

  • Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7(2):135–146

    Article  PubMed  Google Scholar 

  • Stehling R, Vargas O, Santos E et al (1986) Evolution of caprine mastitis induced with staphylococcal and steptococcal enterotoxin. Arq Bras Med Vet Zootec 38(5):701–717

    Google Scholar 

  • Sudhan N, Sharma NG (2010) Mastitis—an important production disease of dairy animals. In: Sarva Manav Vikash Samiti, Gurgoan, pp 72–88

    Google Scholar 

  • Tariba B, Kostelić A, Roić B et al (2017) Caprine arthritis encephalitis virus infection and milk production. Mljekarstvo 67(1):42–48

    Google Scholar 

  • Tian SZ, Chang CJ, Chiang CC et al (2005) Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. Can J Vet Res 69(1):39–45

    PubMed  PubMed Central  Google Scholar 

  • Tormo H, Ali Haimoud-Lekhal D, Laithier C (2006) Les microflores utiles des laits crus de vache et de chèvre: principaux réservoirs et impact de certaines pratiques d’élevage. Renc Rech Rum 13:305–308

    Google Scholar 

  • Tormo H, Ali Haimoud-Lekhal D, Lopez C (2007) Flore microbienne des laits crus de chèvre destinés à la transformation fromagère et pratiques des producteurs. Renc Rech Rum 14:87–90

    Google Scholar 

  • Turin L, Pisoni G, Giannino ML et al (2005) Correlation between milk parameters en CAEV seropositive and negative primiparous goats during an eradication program in italian farm. Small Rum Res 57:73–79

    Article  Google Scholar 

  • Vega S, Martínez López B, Orden JA et al (2004) Prevalencia y etiología de las mamitis subclínicas en el ganado caprino lechero de la Comunidad Valenciana. Laborarorio Avedila 30:2–11

    Google Scholar 

  • Vesterinen HM, Corfe IJ, Sinkkonen V et al (2015) Teat morphology characterization with 3D imaging. Anat Rec (Hoboken) 298(7):1359–1366

    Article  Google Scholar 

  • Wahba NM, Elnisr NAG, Saad MN, et al (2011) Incidence of Nocardia species in raw milk collected from different localities of Assiut City of Egypt. Vet World 4(5):201–204

    Google Scholar 

  • White LJ, Schukken YH, Lam TJG et al (2001) A multispecies model for the transmission and control of mastitis in dairy cows. Epidemiol Infect 127:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zecconi A, Hamann J, Bronzo V et al (2000) Relationship between teat tissue immune defences and intramammary infections. Adv Exp Med Biol 480:287–293

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu H, Zhao X et al (2015) Prevalence and pathogens of subclinical mastitis in dairy goats in China. Trop Anim Health Prod 47(2):429–435

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Margatho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quintas, H., Margatho, G., Rodríguez-Estévez, V., Simões, J. (2017). Understanding Mastitis in Goats (I): Etiopathophysiological Particularities. In: Simões, J., Gutiérrez, C. (eds) Sustainable Goat Production in Adverse Environments: Volume I. Springer, Cham. https://doi.org/10.1007/978-3-319-71855-2_18

Download citation

Publish with us

Policies and ethics