Understanding Mastitis in Goats (I): Etiopathophysiological Particularities

  • Hélder Quintas
  • Gisele Margatho
  • Vicente Rodríguez-Estévez
  • João Simões
Chapter

Abstract

Mastitis represents one major constraint in dairy goat farms implicating adverse effects on milk yield and composition and, in some cases, public health constraints. Intramammary infection, the principal cause of mastitis, can reach high prevalence in dairy goat herds, commonly more than 30%. Coagulase-negative staphylococci and coagulase-positive staphylococci, with emphasis for Staphylococcus aureus, are the major bacterial species related with in intramammary infection. Milk pathogens overtake anatomical, physiological, and immunological local defenses of the mammary glands. However, some enzootic systemic disease, such as contagious agalaxia, among others, with systemic tropism for the mammary gland, can have a significant impact on the milk production and quality. At immune level, neutrophils play a major role in the healthy and infected mammary gland representing 45–75% of total leucocyte counts in milk. Apparently, the threshold for significant neutrophils increase is 700,000 cells/ml. Moreover, the continuous renewal of epithelial cells from apocrine glands, which have phagocytosis cytokine production properties, improves significantly the somatic cells in milk. All these topics are discussed in the present chapter providing key points to improve the udder health status in goats.

References

  1. Albenzio M, Caroprese M (2011) Differential leukocyte count for ewe milk with low and high somatic cell count. J Dairy Res 78:43–48PubMedCrossRefGoogle Scholar
  2. Albenzio M, Santillo A, Kelly AL et al (2015) Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts. J Dairy Sci 98(11):7587–7594Google Scholar
  3. Álvarez-Suárez ME, Otero A, García-López ML et al (2015) Microbiological examination of bulk tank goat’s milk in the Castilla y León region in Northern Spain. J Food Prot 78(12):2227–2232PubMedCrossRefGoogle Scholar
  4. Amorena B, Perez M (1998) Dinamica molecular y celular en la defensa inmune de la glandula mamária caprina. Ovis 54:69–82Google Scholar
  5. Amores J, Sánchez A, Gómez-Martín A et al (2012) Surveillance of Mycoplasma agalactiae and Mycoplasma mycoides subsp. capri in dairy goat herds. Small Rumin Res 102:89–93CrossRefGoogle Scholar
  6. Andrews RJ, Kitchen BJ, Kwee WS et al (1983) Relationship between individual cow somatic cell counts and the mastitis infection status of the udder. Aust J Dairy Technol 38:71–74Google Scholar
  7. Atabai K, Sheppard D, Werb Z (2007) Roles of the innate immune system in mammary gland remodeling during involution. J. Mammary Gland Biol 12:37–45CrossRefGoogle Scholar
  8. Bagnicka E, Winnicka A, Jóźwik A et al (2011) Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin Res 100(1):72–77CrossRefGoogle Scholar
  9. Baumert A, Bruckmaier RM, Wellnitz O (2009) Cell population, viability, and some key immunomodulatory molecules in different milk somatic cell samples in dairy cows. J Dairy Res 76(3):356–364PubMedCrossRefGoogle Scholar
  10. Bazan R, Cervantes E, Salas G et al (2009) Prevalencia de mastitis subclínicas en cabras lecheras en Michoacán. México Revista Científica 19(4):334–338Google Scholar
  11. Bergonier D, Berthelot X (2008) Mycoplasmoses des petits ruminants: le syndrome de l’agalactie contagieuse. Bull Acad Vét Fr 161(2):167–177CrossRefGoogle Scholar
  12. Bergonier D, Blanc M-C, Fleury P et al (1997) Les mammites des ovins et des caprins laitiers: étiologie, épidémiologie, contrôle. Renc Rech Rum 4:251–260Google Scholar
  13. Bergonier D, de Crémoux R, Rupp R et al (2003) Mastitis of dairy small ruminants. Vet Res 34:689–716PubMedCrossRefGoogle Scholar
  14. Blagitz MG, Souza FN, Gomes V et al (2011) Apoptosis and necrosis of polymorphonuclear leukocytes in goat milk with high and low somatic cell counts. Small Rumin Res 100:67–71CrossRefGoogle Scholar
  15. Boutinaud M, Jammes H (2002) Potential uses of milk epithelial cells: a review. Reprod Nutr Dev 42 (2):133–147Google Scholar
  16. Brenaut P, Lefèvre L, Rau A et al (2014) Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Vet Res 45:16.  https://doi.org/10.1186/1297-9716-45-16 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Capuco AV, Bright SA, Pankey JW et al (1992) Increased susceptibility to intramammary infection following removal of teat canal keratin. J Dairy Sci 75:2126–2130PubMedCrossRefGoogle Scholar
  18. Chu C, Yu C, Lee Y et al (2012) Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan. BMC Vet Res 8:39.  https://doi.org/10.1186/1746-6148-8-39 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Contreras A, Corrales JC, Sierra D et al (1995) Prevalence and aetiology of non-clinical intramammary infection in Murciano-Granadina goats. Small Rumin Res 17:71–78CrossRefGoogle Scholar
  20. Contreras A, Corrales JC, Sanchez A et al (1997a) Persistence of subclinical intramammary pathogens in goats throughout lactation. J Dairy Sci 80(11):2815–2819PubMedCrossRefGoogle Scholar
  21. Contreras A, Sanchez A, Corrales J, et al (1997b) Concepto e importância de las mamitis caprinas. In: Mamitis caprina, Ovis (España), No. 53 (Mamitis Caprina I), pp 11–31Google Scholar
  22. Contreras A, Paape MJ, Miller RH (1999) Prevalence of subclinical intramammary infection caused by Staphylococcus epidermidis in a commercial dairy goat herd. Small Rum Res 31:203–208CrossRefGoogle Scholar
  23. Contreras A, Luengo C, Sánchez A et al (2003) The role of intramammary pathogens in dairy goats. Livestock Prod Sci 79:273–283CrossRefGoogle Scholar
  24. Contreras A, Sierra D, Sánchez A et al (2007) Mastitis in small ruminants. Small Rum Res 68:145–153CrossRefGoogle Scholar
  25. Cooray R (1996) Casein effects on the myeloperoxidase-mediated oxygen-dependent bactericidal activity of bovine neutrophils. Vet Immunol Immunopathol 51(1–2):55–65PubMedCrossRefGoogle Scholar
  26. Corrales J, Contreras A., Sanchez, et al (1997) Etiologia y diagnostico microbiologico de las mamitis caprinas. Ovis 53:33–65Google Scholar
  27. Cortimiglia C, Bianchini V, Franco A et al (2015) Short communication: prevalence of Staphylococcus aureus and methicillin-resistant S. aureus in bulk tank milk from dairy goat farms in Northern Italy. J Dairy Sci 98(4):2307–2311PubMedCrossRefGoogle Scholar
  28. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13(1):16–34PubMedPubMedCentralCrossRefGoogle Scholar
  29. Doğruer G, Mk Saribay, Aslantaş O et al (2016) The prevalance, etiology and antimicrobial susceptibility of the microorganisms in subclinical mastitis in goats. Atatürk Üniversitesi Vet Bil Derg 11(2):138–145Google Scholar
  30. Dore S, Liciardi M, Amatiste S et al (2016) Survey on small ruminant bacterial mastitis in Italy, 2013–2014. Small Rum Res 141:91–93CrossRefGoogle Scholar
  31. Dulin AM, Paape MJ, Schultze WD et al (1983) Effect of parity, stage of lactation, and intramammary infection on concentration of somatic cells and cytoplasmic particles in goat milk. J Dairy Sci 66:2426–2433PubMedCrossRefGoogle Scholar
  32. Ezzat Alnakip M, Quintela-Baluja M, Böhme K et al (2014) The immunology of mammary gland of dairy ruminants between healthy and inflammatory conditions. J Vet Med 2014:659801.  https://doi.org/10.1155/2014/659801 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fasulkov M, Karadaev M, Djabirova M (2014) Ultrasound measurements of teat structures in goats. Revue Méd Vét 165(5–6):188–192Google Scholar
  34. Fetherson CM, Lee C, Hartmann PE (2001) Mammary gland defense: the role of colostrums, milk and involution secretion. Adv Nutr Res 10(8):167–198Google Scholar
  35. Gelasakis AI, Angelidis AS, Giannakou R et al (2016) Bacterial subclinical mastitis and its effect on milk yield in low-input dairy goat herds. J Dairy Sci 99(5):3698–3708PubMedCrossRefGoogle Scholar
  36. Göçmen H, Rosales RS, Ayling RD et al (2016) Comparison of PCR tests for the detection of Mycoplasma agalactiae in sheep and goats. Turk J Vet Anim Sci 40:421–427CrossRefGoogle Scholar
  37. Gomes V, Libera AM, Paiva M et al (2006) Effect of the stage of lactation on somatic cell counts in healthy goats (Caprae hircus) breed in Brazil. Small Rumin Res 64(1–2):30–34CrossRefGoogle Scholar
  38. Gonzalo C, Ariznabarreta A, Tardáguila JA et al (1998) Factores infecciosos de variación del recuento celular de la leche de oveja. Ovis 56:27–34Google Scholar
  39. Hibbitt KG, Craven N, Batten H (1996) Anatomy, physiology and immunology of theudder. In: Andrews AH, Blowey RH, Boyd H, et al (eds) Bovine medicine: diseases and husbandry of cattle. Blackwell, Oxford, pp 273–278Google Scholar
  40. Ilhan Z, Eking IH, Koltas S et al (2016) Occurrence of fungal agents in mastitis in dairy goats. J Anım Plant Scı 29(3):4691–4700Google Scholar
  41. Jans C, Merz A, Johler S et al (2017) East and West African milk products are reservoirs for human and livestock-associated Staphylococcus aureus. Food Microbiol 65:64–73PubMedCrossRefGoogle Scholar
  42. Johler S, Giannini P, Jermini M et al (2015) Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins (Basel) 7(3):997–1004CrossRefGoogle Scholar
  43. Kaba J, Strzałkowska N, Jóźwik A et al (2012) Twelve-year cohort study on the influence of caprine arthritis-encephalitis virus infection on milk yield and composition. J Dairy Sci 95(4):1617–1622PubMedCrossRefGoogle Scholar
  44. Kalogridou-Vassiliadou D (1991) Mastitis-related pathogens in goat milk. Small Rum Res 4(2):203–212CrossRefGoogle Scholar
  45. Kehrli ME, Shuster DE (1994) Factors affecting milk somatic cells and their role in health of the bovine mammary gland. J Dairy Sci 77:619–627PubMedCrossRefGoogle Scholar
  46. Kobayashi SD, Voyich JM, DeLeo FR (2003) Regulation of the neutrophil-mediated inflammatory response to infection. Microbes Infect 5(14):1337–1344PubMedCrossRefGoogle Scholar
  47. Koltas S, Ilhan Z (2016) Isolation of some aerobic bacteria and Mycoplasma spp. Van Vet J 27(2):74–78Google Scholar
  48. Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 312(1):63–76Google Scholar
  49. Le Maréchal C, Thiéry R, Vautor E et al (2011) Mastitis impact on technological properties of milk and quality of milk products—a review. Dairy Sci Techno 91:247–282CrossRefGoogle Scholar
  50. Leitner G, Shoshani E, Krifucks O et al (2000) Milk leukocyte population patterns in bovine udder infections of different aetiology. J Vet Med B Infect Dis Vet Public Health 47(8):581–589PubMedCrossRefGoogle Scholar
  51. Leitner G, Eligulashvily R, Krifucks O et al (2003) Immune cell differentiation in mammary gland tissues and milk of cows chronically infected with Staphylococcus aureus. J Vet Med B Infect Dis Vet Public Health 50(1):45–52PubMedCrossRefGoogle Scholar
  52. Leitner G, Merin U, Lavi Y et al (2007) Aetiology of intramammary infection and its effect on milk composition in goat flocks. J Dairy Res 74(2):186–193PubMedCrossRefGoogle Scholar
  53. Leitner G, Krifucks O, Weisblit L et al (2010) The effect of caprine arthritis encephalitis virus infection on production in goats. Vet J 183:328–331PubMedCrossRefGoogle Scholar
  54. Leitner G, Merin U, Krifucks O et al (2012) Effects of intra-mammary bacterial infection with coagulase negative staphylococci and stage of lactation on shedding of epithelial cells and infiltration of leukocytes into milk: comparison among cows, goats and sheep. Vet Immunol Immunopathol 147(3–4):202–210PubMedCrossRefGoogle Scholar
  55. Lerondelle C, Greenland T, Jane M, Mornex JF (1995) Infection of lactating goats by mammary instillation of cell-borne caprine arthritis-encephalitis virus. J Dairy Sci 78:850–855PubMedCrossRefGoogle Scholar
  56. Li Z, Wright A-DG, Yang Y et al (2017) Unique bacteria community composition and co-occurrence in the milk of different ruminants. Sci Rep 7:40950.  https://doi.org/10.1038/srep40950 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Madureira KM, Gomes V (2010) Total and differential leukocyte counts in the milk of healthy goats, using methyl green pyronin stain and cytocentrifugation. Arquivos do Instituto Biológico 77:343–347Google Scholar
  58. Maisi P, Riipinen I (1991) Pathogenicity of different species of staphylococci in caprine udder. Br Vet J 147:126–132PubMedCrossRefGoogle Scholar
  59. Martínez B (2000) El recuento de células somáticas en la leche de cabra, factores de variación y efecto sobre la producción y composición de la leche. Universidad Politécnica de Valencia, Spain, Tesis doctoral, p 307Google Scholar
  60. Matthews JG (2009) Diseases of the goat, 3rd edn. Wiley-Blackwell, pp 213–235Google Scholar
  61. McInnis EA, Kalanetra KM, Mills DA et al (2015) Analysis of raw goat milk microbiota: impact of stage of lactation and lysozyme on microbial diversity. Food Microbiol 46:121–131PubMedCrossRefGoogle Scholar
  62. Merin U, Silanikove N, Shapiro F et al (2004) Changes in milk composition as affected by subclinical mastitis in sheep and goats. S Afr J Anım Scı 34(5):188–191Google Scholar
  63. Merz A, Stephan R, Johler S (2016) Staphylococcus aureus isolates from goat and sheep milk seem to be closely related and differ from isolates detected from bovine milk. Front Microbiol 7:319.  https://doi.org/10.3389/fmicb.2016.00319 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Monks J, Henson PM (2009) Differentiation of the mammary epithelial cell during involution: implications for breast cancer. J Mammary Gland Biol 14:159–170CrossRefGoogle Scholar
  65. Monks J, Geske FJ, Lehman L et al (2002) Do inflammatory cells participate in mammary gland involution? J Mammary Gland Biol 7:163–176CrossRefGoogle Scholar
  66. Muehlherr JE, Zweifel C, Corti S et al (2003) Microbiological quality of raw goat’s and ewe’s bulk-tank milk in Switzerland. J Dairy Sci 86(12):3849–3856PubMedCrossRefGoogle Scholar
  67. Nord K, Adnøy T (1997). Effects of infection by caprine arthritis-encephalitis virus on milk production of goats. J Dairy Sci 80(10):2391–2397Google Scholar
  68. Nowicka D, Czopowicz M, Bagnicka E et al (2015) Influence of small ruminant lentivirus infection on cheese yield in goats. J Dairy Res 82(1):102–106PubMedCrossRefGoogle Scholar
  69. Oliver S, Boor K, Murphy SC, Murinda SE (2009) Food safety hazards associated with consumption of raw milk. Foodborne Pathog. Dis. 6:793–806PubMedCrossRefGoogle Scholar
  70. Oviedo-Boyso J, Valdez-Alarcón JJ, Cajero-Juárez M et al (2006) Innate immune response of bovine mammary gland to pathogenic bacteria responsible for mastitis. J Infect 54:399–409PubMedCrossRefGoogle Scholar
  71. Paape MJ, Capuco AV (1997) Cellular defense mechanisms in the udder and lactation of goats. J Anim Sci 75(2):556–565Google Scholar
  72. Paape MJ, Wergin WP (1977) The leukocyte as a defense mechanism. J Am Vet Med Assoc 170(10 Pt 2):1214–1223Google Scholar
  73. Paape MJ, Bannerman DD, Zhao X et al (2003) The bovine neutrophil: structure and function in blood and milk. Vet Res 34:597–627PubMedCrossRefGoogle Scholar
  74. Paape MJ, Mehrzad J, Zhao X et al (2002) Defense of the bovine mammary gland by polymorphonuclear neutrophil leukocytes. J Mammary Gland Biol 7:109–121CrossRefGoogle Scholar
  75. Paape MJ, Poutrel B, Contreras A, Marco JC, Capuco AV (2001) Milk somatic cells and lactation in small ruminants. J Dairy Sci 84:237–244Google Scholar
  76. Paape MJ, Shafer-Weaver K, Capuco AV, et al. (2000) Immune surveillance of mammary gland secretion during lactation. Adv Exp Med Biol 480:259–277Google Scholar
  77. Paape MJ, Wiggans GR, Bannerman DD, Thomas DL, Sanders AH, Contreras A, Moroni P, Miller RH (2007) Monitoring goat and sheep milk somatic cell counts. Small Ruminant Res 68(1–2):114–125Google Scholar
  78. Amores J, Gómez-Martín A, Paterna, A, et al (2012a) Evaluation of PCR and culture for Mycoplasma agalactiae detection in fresh mastitic goat samples. In: Proceedings of 19th Congress of the International Organization for Mycoplasmology, Toulouse, 15–20 JulyGoogle Scholar
  79. Persson Y, Järnberg A, Humblot P et al (2015) Associations between Staphylococcus aureus intramammary infections and somatic cell counts in dairy goat herds. Small Rum Res 133:62–66CrossRefGoogle Scholar
  80. Plummer P, Plummer C (2012) Diseases of the mammary gland. In: Pugh D, Baird A (eds) Sheep and Goat Medicine. Elsevier Saunders, Missouri, pp 442–465CrossRefGoogle Scholar
  81. Poutrel B (1983) La sensibilité aux mammites: revue des facteurs liés à la vache. Ann Rech Vét 14(1):89–104Google Scholar
  82. Poutrel B (1984) Udder infection of goats by coagulase-negative staphylococci. Vet Microbiol 9(2):131–137PubMedCrossRefGoogle Scholar
  83. Poutrel B, Lerondelle C (1983) Cell content of goat milk: California mastitis test, coulter counter, fossomatic for predicting half infection. J Dairy Sci 66:2575–2579PubMedCrossRefGoogle Scholar
  84. Radostits OM, Gay CC, Blood DC, et al (2007) Veterinary medicine—a textbook of the diseases of cattle, sheep, pigs, goats and horses, 10th edn. W. B. Saunders, pp. 603–700Google Scholar
  85. Rainard P, Riollet C (2006) Innate immunity of the bovine mammary gland. Vet Res 37(3):369–400PubMedCrossRefGoogle Scholar
  86. Rinaldi M, Moroni P, Paape MJ et al (2007) Evaluation of assays for the measurement of bovine neutrophil ROS. Vet Immunol Immunopathol 115(1–2):107–125PubMedCrossRefGoogle Scholar
  87. Rovai M, Caja G, Salama A et al (2014) Identifying the major bacteria causing intramammary infections in individual milk samples of sheep and goats using traditional bacteria culturing and real-time polymerase chain reaction. J Dairy Sci 97:5393–5400PubMedCrossRefGoogle Scholar
  88. Ryan DP, Greenwood PL, Nicholls PJ (1993) Effect of caprine arthritis-encephalitis virus infection on milk cell count and N-acetyl-beta-glucosaminidase activity in dairy goats. J Dairy Res 60(3):299–306PubMedCrossRefGoogle Scholar
  89. Sánchez A, Corrales JC, Marco J et al (1998) Aplicacion del recuento de células somáticas para el control de las mastitis caprinas. Ovis (Mamitis caprina II) 54:37–52Google Scholar
  90. Sánchez A, Contreras A, Corrales JC et al (2001) Relationships between infection with caprine arthritis encephalitis virus, intramammary bacterial infection and somatic cell counts in dairy goats. Vet Rec 148(23):711–714PubMedCrossRefGoogle Scholar
  91. Scaccabarozzi L, Leoni L, Ballarini A et al (2015) Pseudomonas aeruginosa in dairy goats: genotypic and phenotypic comparison of intramammary and environmental isolates. PLoS ONE 10(11):e0142973.  https://doi.org/10.1371/journal.pone.0142973 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Sladek Z, Rysanek D (2006) The role of CD14 during resolution of experimentally induced Staphylococcus aureus and Streptococcus uberis mastitis. Comp Immunol Microbiol Infect Dis 29(4):243–262PubMedCrossRefGoogle Scholar
  93. Sladek Z, Rysanek D (2010) Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland. Acta Vet Scand 52:12.  https://doi.org/10.1186/1751-0147-52-12 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Smith MC, Sherman DM (2009) Mammary gland and milk production. In: Goat Medicine, 2nd edn. Wiley-Blackwell, pp 647–679Google Scholar
  95. Sordillo LM, Streicher KL (2002) Mammary gland immunity and mastitis susceptibility. J Mammary Gland Biol Neoplasia 7(2):135–146PubMedCrossRefGoogle Scholar
  96. Stehling R, Vargas O, Santos E et al (1986) Evolution of caprine mastitis induced with staphylococcal and steptococcal enterotoxin. Arq Bras Med Vet Zootec 38(5):701–717Google Scholar
  97. Sudhan N, Sharma NG (2010) Mastitis—an important production disease of dairy animals. In: Sarva Manav Vikash Samiti, Gurgoan, pp 72–88Google Scholar
  98. Tariba B, Kostelić A, Roić B et al (2017) Caprine arthritis encephalitis virus infection and milk production. Mljekarstvo 67(1):42–48Google Scholar
  99. Tian SZ, Chang CJ, Chiang CC et al (2005) Comparison of morphology, viability, and function between blood and milk neutrophils from peak lactating goats. Can J Vet Res 69(1):39–45PubMedPubMedCentralGoogle Scholar
  100. Tormo H, Ali Haimoud-Lekhal D, Laithier C (2006) Les microflores utiles des laits crus de vache et de chèvre: principaux réservoirs et impact de certaines pratiques d’élevage. Renc Rech Rum 13:305–308Google Scholar
  101. Tormo H, Ali Haimoud-Lekhal D, Lopez C (2007) Flore microbienne des laits crus de chèvre destinés à la transformation fromagère et pratiques des producteurs. Renc Rech Rum 14:87–90Google Scholar
  102. Turin L, Pisoni G, Giannino ML et al (2005) Correlation between milk parameters en CAEV seropositive and negative primiparous goats during an eradication program in italian farm. Small Rum Res 57:73–79CrossRefGoogle Scholar
  103. Vega S, Martínez López B, Orden JA et al (2004) Prevalencia y etiología de las mamitis subclínicas en el ganado caprino lechero de la Comunidad Valenciana. Laborarorio Avedila 30:2–11Google Scholar
  104. Vesterinen HM, Corfe IJ, Sinkkonen V et al (2015) Teat morphology characterization with 3D imaging. Anat Rec (Hoboken) 298(7):1359–1366CrossRefGoogle Scholar
  105. Wahba NM, Elnisr NAG, Saad MN, et al (2011) Incidence of Nocardia species in raw milk collected from different localities of Assiut City of Egypt. Vet World 4(5):201–204Google Scholar
  106. White LJ, Schukken YH, Lam TJG et al (2001) A multispecies model for the transmission and control of mastitis in dairy cows. Epidemiol Infect 127:567–576PubMedPubMedCentralCrossRefGoogle Scholar
  107. Zecconi A, Hamann J, Bronzo V et al (2000) Relationship between teat tissue immune defences and intramammary infections. Adv Exp Med Biol 480:287–293PubMedCrossRefGoogle Scholar
  108. Zhao Y, Liu H, Zhao X et al (2015) Prevalence and pathogens of subclinical mastitis in dairy goats in China. Trop Anim Health Prod 47(2):429–435PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hélder Quintas
    • 1
  • Gisele Margatho
    • 2
  • Vicente Rodríguez-Estévez
    • 3
  • João Simões
    • 2
  1. 1.Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança (IPB)BragançaPortugal
  2. 2.Department of Veterinary Sciences, Agricultural and Veterinary Sciences SchoolUniversity of Trás-os-Montes and Alto DouroVila RealPortugal
  3. 3.Department of Animal ProductionUniversity of CórdobaCórdobaSpain

Personalised recommendations