Haemoparasitism of Goats and Sheep

  • Snorre Stuen


Haemoparasites of goats and sheep occur worldwide and are transmitted by vectors, especially ticks and tsetse flies. Several of these parasites have a significant impact on the development of the small ruminant industry. However, only scattered information is available on haemoparasitism of small ruminants. In addition, climate change and transport of vectors/pathogens between geographical areas will have an impact on the distribution. Active surveillance is necessary to obtain reliable maps concerning establishment of both vectors and pathogens. Moreover, new pathogens in small ruminants will be revealed in the future and perhaps become more abundant. Management of these infections should include integrated control strategies, such as host and breed resistance to the vectors and their pathogens, vector control and the use of available vaccines against vectors and vector-borne infections. The present chapter focus on the following haemoparasites: Anaplasma ovis, A. phagocytophilum, Babesia ovis/motasi, Ehrlichia ruminantium, Theileria spp. and Trypanosoma spp.


  1. Allsopp BA (2009) Trend in control of heartwater. Onderstepoort J Vet Res 76:81–88CrossRefPubMedGoogle Scholar
  2. Allsopp MT, Van Strijp MF, Faber E et al (2007) Ehrlichia ruminantium variants which do not cause heartwater in South Africa. Vet Microbial 120:158–166CrossRefGoogle Scholar
  3. Altay K, Dumanli N, Aktas M (2012) A study on ovine tick-borne hemoprotozoan parasites (Theileria and Babesia) in the East Black Sea Region of Turkey. Parasitol Res 111(1):149–153CrossRefPubMedGoogle Scholar
  4. Anika SM, Nouws JF, van Gogh H et al (1986) Chemotherapy and pharmacokinetics of some antimicrobial agents in healthy dwarf goats and those infected with Ehrlichia phagocytophila (tick-borne fever). Res Vet Sci 41(3):386–390PubMedGoogle Scholar
  5. Aydin MF, Aktas M, Dumanli N (2015) Molecular identification of Theileria and Babesia in ticks collected from sheep and goats in the Black Sea region of Turkey. Parasitol Res 114(1):65–69CrossRefPubMedGoogle Scholar
  6. Bakken JS, Dumler JS (2015) Human granulocytic anaplasmosis. Infect Dis Clin N Am 29:341–355CrossRefGoogle Scholar
  7. Barry DM, Van-Niekerk CH (1990) Anaplasmosis in improved Boer goats in South Africa artificially infected with Anaplasma ovis. Small Rumin Res 3:191–197CrossRefGoogle Scholar
  8. Ben Said M, Belkahia H, Alberti A et al (2015a) Survey of anaplasma species in small ruminants reveals the presence of novel strains closely related to A. phagocytophilum in Tunisia. Vector Borne Zoonotic Dis 15(10):580–590CrossRefPubMedGoogle Scholar
  9. Ben Said M, Belkahia H, Karaoud M et al (2015b) First molecular survey of Anaplasma bovis in small ruminants from Tunisia. Vet Microbiol 179(3–4):322–326CrossRefPubMedGoogle Scholar
  10. Ben Said M, Belkahia H, El Mabrouk N et al (2017) Anaplasma platys-like strains in ruminants from Tunisia. Inf Gen Evol 29:226–233CrossRefGoogle Scholar
  11. Bown KJ, Lambin X, Ogden NH et al (2009) Delineating Anaplasma phagocytophilum ecotypes in coexisting, discrete enzootic cycles. Emerg Infect Dis 15(12):1948–1954CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brodie TA, Holmes PH, Urquhart GM (1988) Prophylactic use of long-acting tetracycline against tick-borne fever (Cytoecetes phagocytophila) in sheep. Vet Rec 122:43–44CrossRefPubMedGoogle Scholar
  13. Camus E, Maillard JC, Ruff G et al (1996) Genetic resistance of Creole goats to cowdriosis in Guadeloupe. Status in 1995. Ann NY Acad Sci 791:46–53CrossRefPubMedGoogle Scholar
  14. Chochlakis D, Ioannou I, Tselentis Y et al (2010) Human anaplasmosis and Anaplasma ovis variant. Emer Inf Dis 16:1031–1032CrossRefGoogle Scholar
  15. de la Fuente J, Atkinson MW, Naranjo V et al (2007) Sequence analysis of the msp4 gene of Anaplasma ovis strains. Vet Microbiol 119:375–381CrossRefPubMedGoogle Scholar
  16. Djiba ML, Mediannikov O, Mbengue M et al (2013) Survey of Anaplasmataceae bacteria in sheep from Senegal. Trop Anim Health Prod 45:1557–1561CrossRefPubMedGoogle Scholar
  17. Duh D, Punda-Polic V, Trilar T et al (2008) Molecular detection of Theileria sp. in ticks and naturally infected sheep. Vet Parasitol 151:327–331CrossRefPubMedGoogle Scholar
  18. Dumler JS, Barbet AF, Bekker CP et al (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51:2145–2165CrossRefPubMedGoogle Scholar
  19. Esmaeilnejad B, Tavassoli M, Asri-Rezaei S et al (2014) PCR-based detection of Babesia ovis in Rhipicephalus bursa and small Ruminants. J Parasitol Res 2014:294704. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Estrada-Peña A, Bouattour A, Camicas JL et al (2004) Ticks of domestic animals in the Mediterranean region. A guide to identification of species. University of Zaragoza, Spain, p 131Google Scholar
  21. Foggie A (1951) Studies on the infectious agent of tick-borne fever in sheep. J Path Bacteriol 63:1–15CrossRefGoogle Scholar
  22. Friedhoff KT (1997) Tick-borne diseases of sheep and goats caused by Babesia, Theileria or Anaplasma spp. Parassitologia 39(2):99–109PubMedGoogle Scholar
  23. Ge Y, Pan W, Yin H (2012) Prevalence of Theileria infections in goats and sheep in southeastern China. Vet Parasitol 186(3–4):466–469CrossRefPubMedGoogle Scholar
  24. Geiger A, Ponton F, Simo G (2015) Adult blood-feeding tsetse flies, trypanosomes, microbiota and the fluctuating environment in sub-Saharan Africa. ISME J 9:1496–1507CrossRefPubMedGoogle Scholar
  25. Goddard J, Varela-Stokes AS (2009) Role of the lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet Parasitol 160(1–2):1–12CrossRefPubMedGoogle Scholar
  26. Gokce HI, Woldehiwet Z (1999) Differential haematological effects of tick-borne fever in sheep and goats. Zentralbl Vet Med B 46(2):105–115CrossRefGoogle Scholar
  27. Gray JS, Dautel H, Estrada-Peña A et al (2009) Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009:593232. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Guan G, Ma M, Moreau E et al (2009) A new ovine Babesia species transmitted by Hyalomma anatolicum anatolicum. Exp Parasitol 122:261–267CrossRefPubMedGoogle Scholar
  29. Gutierrez C, Corbera JA, Morales M et al (2006) Trypanosomosis in goats: current status. Ann N Y Acad Sci 1081:300–210Google Scholar
  30. Habela M, Reina D, Nieto C et al (1990) Antibody response and duration of latent infection in sheep following experimental infection with Babesia ovis. Vet Parasitol 35(1–2):1–10CrossRefPubMedGoogle Scholar
  31. Hornok S, Meli ML, Erdos A et al (2009) Molecular characterization of two different strains of haemotropic mycoplasmas from a sheep flock with fatal haemolytic anaemia and concomitant Anaplasma ovis infection. Vet Microbiol 136:372–377CrossRefPubMedGoogle Scholar
  32. Hornok S, de la Fuente J, Biró N et al (2011) First molecular evidence of Anaplasma ovis and Rickettsia spp. in keds (Diptera: Hippoboscidae) of sheep and wild ruminants. Vector Borne Zoonotic Dis 11(10):1319–1321CrossRefPubMedGoogle Scholar
  33. Ilemobade AA (1982) Blood parasites of African goats. Proceedings of 3 international conference goat production and diseases, Tuscon, Arizona, pp 68–71Google Scholar
  34. Jaensson TG, Jaenson DG, Eisen L et al (2012) Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the last 30 years in Sweden. Parasit Vectors 5(1):8. CrossRefGoogle Scholar
  35. Jahfari S, Coipan EC, Fonville M et al (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7:439. CrossRefGoogle Scholar
  36. Jongejan F, Uilenberg G (2004) The global importance of ticks. Parasitology 129:S3–S14CrossRefPubMedGoogle Scholar
  37. Jongejan F, Uilenberg G, Franssen FF et al (1988) Antigenic differences between stocks of Cowdria ruminantium. Res Vet Sci 44:186–189PubMedGoogle Scholar
  38. Kocan KM, de la Fuente J, Blouin EF et al (2004) Anaplasma marginale (Rickettsiales: Anaplasmataceae): recent advances in defining host-pathogen adaptations of a tick-borne rickettsia. Parasitology 129(Suppl.):S285–S300Google Scholar
  39. Ladbury GAF, Stuen S, Thomas R et al (2008) Dynamic transmission of numerous Anaplasma phagocytophilum genotypes among lambs in an infected sheep flock in an area of anaplasmosis endemicity. J Clin Microbiol 46(5):1686–1691CrossRefPubMedPubMedCentralGoogle Scholar
  40. Li H, Zheng YC, Ma L et al (2015) Human infection with a novel tick-borne Anaplasma species in China: a surveillance study. Lancet Infect Dis 15(6):663–670CrossRefPubMedGoogle Scholar
  41. Liebisch A (1997) General review of the tick species which parasitize sheep and goats worldwide. Parassitologia 39:123–129Google Scholar
  42. Liu Z, Ma M, Wang Z et al (2012) Molecular survey and genetic identification of Anaplasma species in goats from central and southern China. Appl Environ Microbiol 78(2):464–470CrossRefPubMedPubMedCentralGoogle Scholar
  43. Loftis AD, Reeves WK, Spurlock JP et al (2006) Infection of a goat with a tick-transmitted Ehrlichia from Georgia, U.S.A. that is closely related to Ehrlichia ruminantium. J Vector Ecol 31(2):213–223CrossRefPubMedGoogle Scholar
  44. Loftis AD, Levin ML, Spurlock JP (2008) Two USA Ehrlichia spp. cause febrile illness in goats. Vet Microbiol 130(3–4):398–402CrossRefPubMedGoogle Scholar
  45. Loftis AD, Kelly PJ, Paddock CD et al (2016) Panola Mountain Ehrlichia in Amblyomma maculatum from the United States and Amblyomma variegatum (Acari: Ixodidae) from the Caribbean and Africa. J Med Entomol 53(3):696–698CrossRefPubMedGoogle Scholar
  46. Lopes FC, de Paiva KA, Coelho WA et al (2016) Lactation curve and milk quality of goats experimentally infected with Trypanosoma vivax. Exp Parasitol 167:17–24CrossRefPubMedGoogle Scholar
  47. Mahan SM (2006) Diagnosis and control of heartwater, Ehrlichia ruminantium infection: an update. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1:055Google Scholar
  48. Maillard JC, Maillard N (1998) Historique du peuplement bovin et de líntroduction de la tique Amblyomma variegatum dans les iles francaises des Antilles. Synthèse bibliographique Ethnozootechnie 1:19–26Google Scholar
  49. Mallick KP, Dwivedi SK, Malhotra MN (1979) Anaplasmosis in goats: report of clinical cases. Indian Vet J 56:693–694Google Scholar
  50. Mans BJ, Piennar R, Latif AA (2015) A review of Theileria diagnostics and epidemiology. Inter J Parasit: Parasit Wildl 4:104–118Google Scholar
  51. Martinez D, Maillard JC, Coisne S et al (1994) Protection of goats against heartwater acquired by immunisation with inactivated elementary bodies of Cowdria ruminantium. Vet Immunol Immunopathol 41:153–163CrossRefPubMedGoogle Scholar
  52. McHardy N, Woollon RM, Clampitt RB et al (1986) Efficacy, toxicity and metabolism of imidocarb dipropionate in the treatment of Babesia ovis infection in sheep. Res Vet Sci 41:14–20PubMedGoogle Scholar
  53. Mosqueda J, Olvera-Ramirez A, Aguilar-Tipacamú G et al (2012) Current advances in detection and treatment of babesiosis. Curr Med Chem 19:1504–1518CrossRefPubMedPubMedCentralGoogle Scholar
  54. Nagore D, Garcia-Sanmartin J, Garcia-Pérez AL et al (2004) Identification, genetic diversity and prevalence of Theileria and Babesia species in a sheep population from Northern Spain. Int J Parasitol 34:1059–1067CrossRefPubMedGoogle Scholar
  55. Ndungu LW, Aguirre C, Rurangirwa FR et al (1995) Detection of Anaplasma ovis infection in goats by major surface protein 5 competitive inhibition enzyme-linked immunosorbent assay. J Clin Microbiol 33(3):675–679Google Scholar
  56. Neimark H, Hoff B, Ganter M (2004) Mycoplasma ovis comb. nov. (formerly Eperythrozoon ovis), an eperythrocytic agent of haemolytic anaemia in sheep and goats. Int J Syst Evol Microbiol 54:365–371CrossRefPubMedGoogle Scholar
  57. Niu Q, Liu Z, Yang J et al (2016) Genetic diversity and molecular characterization of Babesia motasi-like in small ruminants and ixodid ticks from China. Infect Genet Evol 41:8–15CrossRefPubMedGoogle Scholar
  58. Niu Q, Liu Z, Yang J et al (2017) Genetic characterization and molecular survey of Babesia sp. Xinjiang infection in small ruminants and ixodes ticks in China. Infect Genet Evol 49:330–335CrossRefPubMedGoogle Scholar
  59. Ozubek S, Aktas M (2017) Molecular evidence of a new Babesia sp. in goats. Vet Parasitol 233:1–8CrossRefPubMedGoogle Scholar
  60. Palmer GH, Abbott JR, French DM et al (1998) Persistence of Anaplasma ovis infection and conservation of the msp-2 and msp-3 multigene families within the genus Anaplasma. Infect Immun 66:6035–6039PubMedPubMedCentralGoogle Scholar
  61. Peregrine AS (1994) Chemotherapy and delivery systems: haemoparasites. Vet Parasitol 54:223–248CrossRefPubMedGoogle Scholar
  62. Pieragostini E, Ciani E, Rubino G et al (2011) Tolerance to tick-borne diseases in sheep: highlights of a twenty-year experience in a Mediterranean environment. In: Health management—different approaches and solutions. In: Smigorski K (ed) InTech, pp 451–476Google Scholar
  63. Preston PM (2001) Theileriosis. In: Service MW (ed) The encyclopedia of arthropod-transmitted infections. CAB International, Wallingford, pp 487–504Google Scholar
  64. Provost A, Bezuidenhout JD (1987) The historical background and global importance of heartwater. Onderstepoort J Vet Res 54:165–169PubMedGoogle Scholar
  65. Prozesky L, Du Plessis JL (1985) The pathology of heartwater. II. A study of the lung lesions in sheep and goats infected with the Ball, strain of Cowdria ruminantium. Onderstepoort J Vet Res 52:81–85PubMedGoogle Scholar
  66. Qiu H, Kelly PJ, Zhang J et al (2016) Molecular detection of Anaplasma spp. and Ehrlichia spp. in ruminants from twelve provinces of China. Can J Inf Dis Med Microbiol 2016:9183861.
  67. Renneker S, Abdo J, Salih DE et al (2013) Can Anaplasma ovis in small ruminants be neglected any longer? Trans Emerg Dis 60(suppl. 2):105–112CrossRefGoogle Scholar
  68. Reppert E, Galindo RC, Breshears MA et al (2013) Demonstration of transplacental transmission of a human isolate of Anaplasma phagocytophilum in an experimentally infected sheep. Trans Emerg Dis 60(Suppl. 2):93–96CrossRefGoogle Scholar
  69. Ros-Garcia A, Barandika JF, Garcia-Pérez AL et al (2013) Assessment of exposure to piroplasms in sheep grazing in communal mountain pastures by using a multiplex DNA bead-based suspension array. Parasit Vectors 6(1):277. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ruiz JP, Nyingilili HS, Mbata GH et al (2015) The role of domestic animals in the epidemiology of human African trypanosomiasis in Ngorongoro conservation area, Tanzania. Parasit Vectors 8:510. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Samish M, Ginsberg H, Glazer I (2004) Biological control of ticks. Parasitology 129:S389–S403CrossRefPubMedGoogle Scholar
  72. Scharf W, Schauer S, Freyburger F et al (2011) Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J Clin Microbiol 49:790–796CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schnittger L, Rodriguez AE, Florin-Christensen M et al (2012) Babesia: a world emerging. Infect Genet Evol 12(8):1788–1809CrossRefPubMedGoogle Scholar
  74. Schreeg ME, Marr HS, Tarigo JL et al (2016) Mitochondrial genome sequences and structures aid in the resolution of piroplasmida phylogeny. PLoS ONE 11(11):e0165702. CrossRefPubMedPubMedCentralGoogle Scholar
  75. Seong G, Han YJ, Chae JB et al (2015) Detection of Anaplasma sp. in Korean native goats (Capra aegagrus hircus) on Jeju Island, Korea. Korean J Parasitol 53(6):765–769CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shope R (1991) Global climate change and infectious diseases. Environ Health Perspect 96:171–174CrossRefPubMedPubMedCentralGoogle Scholar
  77. Silaghi C, Scheuerle MC, Friche Passos LM et al (2011) PCR detection of Anaplasma phagocytophilum in goat flocks in an area endemic for tick-borne fever in Switzerland. Parasite 18:57–62CrossRefPubMedPubMedCentralGoogle Scholar
  78. Smith MC, Sherman DM (2009) Goat medicine, 2nd edn. Wiley-Blackwell, Ames, pp 288–302CrossRefGoogle Scholar
  79. Sparagano OA, Spitalska E, Namavari M et al (2006) Phylogenetics of Theileria species in small ruminants. Ann NY Acad Sci 1081:505–508CrossRefPubMedGoogle Scholar
  80. Stuen S (2003) Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) infection in sheep and wild ruminants in Norway. A study on clinical manifestation, distribution and persistence. Dissertation, Norwegian School of Veterinary ScienceGoogle Scholar
  81. Stuen S (2016) Haemoparasites in small ruminants in European countries: challenges and clinical relevance. Small Rumin Res 142:22–27CrossRefGoogle Scholar
  82. Stuen S, Longbottom D (2010) Treatment and control of chlamydial and rickettsial infections in sheep and goats. Vet Clin North Am Food Ani Pract 27:213–233CrossRefGoogle Scholar
  83. Stuen S, Pettersen KS, Granquist EG et al (2013a) Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis 4(3):197–201CrossRefPubMedGoogle Scholar
  84. Stuen S, Granquist E, Silaghi C (2013b) Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front cell infect microbial 3:31. Google Scholar
  85. Sun XF, Zhao L, Wen HL et al (2015) Anaplasma species in China. Lancet Infect Dis 15(11):1263–1264CrossRefPubMedGoogle Scholar
  86. Taylor MA, Coop RL, Wall RL (2016) Veterinary parasitology, 4th edn. Wiley Blackwell, Oxford, pp 489–497Google Scholar
  87. Torina A, Galindo RC, Vicente J et al (2010) Characterization of Anaplasma phagocytophilum and A. ovis infection in a naturally infected sheep flock with poor health condition. Trop Anim Health Prod 42:1327–1331CrossRefPubMedGoogle Scholar
  88. Uilenberg G (1983) Heartwater (Cowdria ruminantium infection): current status. Adv Vet Sci Comp Med 27:427–480PubMedGoogle Scholar
  89. Uilenberg G (2006) Babesia—a historical overview. Vet Parasitol 138:3–10CrossRefPubMedGoogle Scholar
  90. Uilenberg G, Camus E (1993) Heartwater (cowdriosis). In: Woldehiwet Z, Ristic M (eds) Rickettsial and Chlamydial diseases of domestic animals. Pergamon Press, Oxford, pp 293–332Google Scholar
  91. Uilenberg G, Van Vorstenbosch CJ, Perié NM (1979) Blood parasites in sheep in the Netherlands. I. Anaplasma mesaeterum sp.n. (Rickettsiales, Anaplasmataceae). Vet Q 1:14–22CrossRefPubMedGoogle Scholar
  92. van der Merwe L (1987) The infection and treatment method of vaccination against heartwater. Onderstepoort J Vet Res 54:489–491PubMedGoogle Scholar
  93. van Miert ASJPAM, van Duin CTM, Schotman AJH et al (1984) Clinical, haematological, and blood biochemical changes in goats after experimental infection with tick-borne fever. Vet Parasitol 16:225–233CrossRefPubMedGoogle Scholar
  94. Vreysen MJB, Seck MT, Sall B et al (2013) Tsetse flies: Their biology and control using area-wide integrated pest management approaches. J Invert Pathol 112(Suppl. 1):S15–S25CrossRefGoogle Scholar
  95. Walker JB, Olwage A (1987) The tick vectors of Cowdria ruminantium (Ixodoidea, Ixodidae, genus Amblyomma) and their distribution. Onderstepoort J Vet Res 54:353–379PubMedGoogle Scholar
  96. Wen Y-Z, Lun Z-R, Zhu X-Q et al (2016) Further evidence from SSCP and ITS DNA sequencing support Trypanosoma evansi and Trypanosoma equiperdum as subspecies or even strains of Trypanosoma brucei. Infect Gen Evol 41:56–62CrossRefGoogle Scholar
  97. Woldehiwet Z (2007) Tick-borne diseases. In: Aitken ID (ed) Diseases of sheep, 4th edn. Blackwell publishing, Oxford, pp 347–355CrossRefGoogle Scholar
  98. Woldehiwet Z, Scott GR (1993) Tick-borne (pasture) fever. In: Woldehiwet Z, Ristic M (eds) Rickettsial and chlamydial diseases of domestic animals. Pergamon Press, Oxford, pp 233–254Google Scholar
  99. Yang J, Liu Z, Niu Q et al (2016) Anaplasma phagocytophilum in sheep and goats in central and southeastern China. Parasite Vectors 9:953. Google Scholar
  100. Yeruham I, Hadani A, Galker F (1998) Some epizootiological and clinical aspects of ovine babesiosis caused by Babesia ovis—a review. Vet Parasitol 74:153–163CrossRefPubMedGoogle Scholar
  101. Yin H, Schnittger L, Luo J et al (2007) Ovine theileriosis in China: a new look at an old story. Parasitol Res 101(Suppl. 2):S191–S195CrossRefPubMedGoogle Scholar
  102. Zhang J, Kelly P, Guo W et al (2015) Development of a generic Ehrlichia FRET-qPCR and investigation of ehrlichiosis in domestic ruminants on five Caribbean islands. Parasite Vectors 8:506. CrossRefGoogle Scholar
  103. Zhang Y, Lv Y, Cui Y et al (2016a) First molecular evidence for the presence of Anaplasma DNA in milk from sheep and goats in China. Parasitol Res 115(7):2789–2795CrossRefPubMedGoogle Scholar
  104. Zhang Y, Lv Y, Zhang F et al (2016b) Molecular and phylogenetic analysis of Anaplasma spp. in sheep and goats from six provinces of China. J Vet Sci 17:523–529CrossRefPubMedPubMedCentralGoogle Scholar
  105. Zobba R, Anfossi AG, Pinna Parpaglia ML et al (2014) Molecular investigation and phylogeny of Anaplasma spp. in Mediterranean ruminants reveal the presence of neutrophil-tropic strains closely related to A. platys. Appl Environ Microbiol 80:271–280CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Production Animal Clinical SciencesNorwegian University of Life SciencesSandnesNorway

Personalised recommendations