Breath Sounds pp 291-304 | Cite as

Future Prospects for Respiratory Sound Research

Chapter

Abstract

Respiratory sounds remain one of the most valuable information for diagnosing and monitoring respiratory diseases in children and adults, especially since subjectivity of auscultation has been removed using computerized techniques. Nevertheless, their wide implementation in clinical practice needs further research in several areas. The future prospects for respiratory sound research are proposed to be organized in three main areas: basic and clinical research, equipment, and knowledge translation. Basic and clinical research is deemed necessary to establish the origin, characteristics, and clinical meaning of respiratory sounds in different respiratory diseases, across all ages and in different settings. There is also much room for technological advances by developing hand-held, user-friendly, and low-cost equipment with machine-learning algorithms that may provide automatic analysis of the main respiratory sound parameters. This information, if integrated in electronic health records, could contribute for robust clinical decision support systems, which could then be integrated in wearables to obtain data at bedside or remotely and empower not only health professionals but also patients, caregivers, and citizens for self-management of health and well-being. Finally, several systematic reviews and consensus involving different stakeholders on terminology, acquisition, analysis, and interpretation of respiratory sounds are needed to start a knowledge translation unit. This chapter will provide a comprehensive overview of the different areas of respiratory sounds where future research would be valuable to contribute to far-reaching positive changes in managing respiratory diseases.

Keywords

Respiratory sounds Knowledge translation Equipment Electronic health records Future research Translational research 

Notes

Acknowledgments

We would like to thank Ms. Bruria Freidman from the Sleep-Wake Disorder Unit of Soroka University Medical Center for her support and collaboration. This study was supported in part by the Israeli Ministry of Industry and Trade, the Kamin Program, award no. 46168, and by the Israel Science Foundation (ISF) grant no. 1403/15.

References

  1. 1.
    Bishop PJ (1981) Reception of the stethoscope and Laënnec’s book. Thorax 36(7):487–492PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bauserman M, Hailey C, Gado J, Lokangaka A, Williams J, Richards-Kortum R, Tshefu A, Bose C (2015) Determining the utility and durability of medical equipment donated to a rural clinic in a low-income country. Int Health 7(4):262–265PubMedCrossRefGoogle Scholar
  3. 3.
    Ellington LE, Gilman RH, Tielsch JM, Steinhoff M, Figueroa D, Rodriguez S, Caffo B, Tracey B, Elhilali M, West J, Checkley W (2012) Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis in resource-poor settings: protocol and methods for an observational study. BMJ Open 2(1):e000506PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370(8):744–751PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Moussavi ZK, Leopando MT, Pasterkamp H, Rempel G (2000) Computerized acoustical respiratory phase detection without airflow measurement. Med Biol Eng Comput 38(2):198–203PubMedCrossRefGoogle Scholar
  6. 6.
    Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N (2004) Neural classification of lung sounds using wavelet coefficients. Comput Biol Med 34(6):523–537PubMedCrossRefGoogle Scholar
  7. 7.
    Polat H, Guler I (2004) A simple computer-based measurement and analysis system of pulmonary auscultation sounds. J Med Syst 28(6):665–672PubMedCrossRefGoogle Scholar
  8. 8.
    Gavriely N, Nissan M, Cugell D, Rubin A (1994) Respiratory health screening using pulmonary function tests and lung sound analysis. Eur Respir J 7(1):35–42PubMedCrossRefGoogle Scholar
  9. 9.
    Pasterkamp H, Powell RE, Sanchez I (1996) Lung sound spectra at standardized air flow in normal infants, children, and adults. Am J Resp Crit Care 154(2):424–430CrossRefGoogle Scholar
  10. 10.
    Oliveira A, Marques A (2014) Respiratory sounds in healthy people: a systematic review. Respir Med 108(4):550–570PubMedCrossRefGoogle Scholar
  11. 11.
    Gurung A, Scrafford CG, Tielsch JM, Levine OS, Check W (2011) Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 105(9):1396–1403PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Jácome C, Marques A (2015) Computerized respiratory sounds in patients with COPD: a systematic review. COPD 12(1):104–112PubMedCrossRefGoogle Scholar
  13. 13.
    Murphy RLH (2008) In defense of the stethoscope. Respir Care 53(3):355–369PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bettencourt PE, Del Bono EA, Spiegelman D, Hertzmark E, Murphy RL Jr (1994) Clinical utility of chest auscultation in common pulmonary diseases. Am J Respir Crit Care Med 150(5 Pt 1):1291–1297PubMedCrossRefGoogle Scholar
  15. 15.
    Jácome C, Oliveira A, Marques A (2015) Computerized respiratory sounds: a comparison between patients with stable and exacerbated COPD. Clin Respir J 11(5):612–620PubMedCrossRefGoogle Scholar
  16. 16.
    Marques A, Oliveira A, Jácome C (2014) Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: a systematic review. Respir Care 59(5):765–776PubMedCrossRefGoogle Scholar
  17. 17.
    Sovijärvi A, Dalmasso F, Vanderschoot J, Malmberg L, Righini G, Stoneman S (2000) Definition of terms for applications of respiratory sounds. Eur Respir Rev 10(77):597–610Google Scholar
  18. 18.
    Sánchez Morillo D, Astorga Moreno S, Fernández Granero MÁ, León Jiménez A (2013) Computerized analysis of respiratory sounds during COPD exacerbations. Comput Biol Med 43(7):914–921PubMedCrossRefGoogle Scholar
  19. 19.
    Pinho C, Oliveira A, Oliveira D, Dinis J, Marques A (2014) RIBS@UA: interface to collect and store respiratory data, a preliminary study. Comput Biol Med 47:44–57PubMedCrossRefGoogle Scholar
  20. 20.
    Taplidou SA, Hadjileontiadis LJ (2007) Wheeze detection based on time-frequency analysis of breath sounds. Comput Biol Med 37(8):1073–1083PubMedCrossRefGoogle Scholar
  21. 21.
    Serbes G, Sakar CO, Kahya YP, Aydin N (2013) Pulmonary crackle detection using time–frequency and time–scale analysis. Digital Signal Process 23(3):1012–1021CrossRefGoogle Scholar
  22. 22.
    Benedetto G, Dalmasso F, Guarene MM (1983) A method for the acoustical analysis of respiratory crackles in cryptogenic fibrosing alveolitis. IEEE T Bio-Med Eng 30(9):620–623CrossRefGoogle Scholar
  23. 23.
    Ono M, Arakawa K, Mori M, Sugimoto T, Harashima H (1989) Separation of fine crackles from vesicular sounds by a nonlinear digital-filter. IEEE T Bio-Med Eng 36(2):286–291CrossRefGoogle Scholar
  24. 24.
    Cátia P, Oliveira A, Jácome C, Rodrigues JM, Marques A (2016) Integrated approach for automatic crackle detection based on fractal dimension and box filtering. IJRQEH 5(4):34–50Google Scholar
  25. 25.
    Fredberg JJ, Holford SK (1983) Discrete lung sounds: crackles (rales) as stress-relaxation quadrupoles. J Acoust Soc Am 73(3):1036–1046PubMedCrossRefGoogle Scholar
  26. 26.
    Gavriely N, Kelly KB, Grotberg JB, Loring SH (1985) Forced expiratory wheezes are a manifestation of airway flow limitation. J Appl Physiol 62(6):2398–2403CrossRefGoogle Scholar
  27. 27.
    Gavriely N, Shee TR, Cugell DW, Grotberg JB (1985) Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J Appl Physiol 66(5):2251–2261CrossRefGoogle Scholar
  28. 28.
    Grotberg JB, Gavriely N (1989) Flutter in collapsible tubes: a theoretical model of wheezes. J Appl Physiol 66(5):2262–2273PubMedCrossRefGoogle Scholar
  29. 29.
    Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, Murphy R (2009) Mechanism of inspiratory and expiratory crackles. Chest 135(1):156–164PubMedCrossRefGoogle Scholar
  30. 30.
    Forgacs P (1967) Crackles and wheezes. Lancet 290(7508):203–205CrossRefGoogle Scholar
  31. 31.
    Nath AR, Capel LH (1974) Inspiratory crackles – early and late. Thorax 29(2):223–227PubMedCentralCrossRefGoogle Scholar
  32. 32.
    Nath AR, Capel LH (1974) Inspiratory crackles and mechanical events of breathing. Thorax 29(6):695–698PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Forgacs P (1978) Lung sounds. Bailliere Tindall, LondonGoogle Scholar
  34. 34.
    Forgacs P (1978) The functional basis of pulmonary sounds. Chest 73(3):399–405PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Grotberg JB, Davis SH (1980) Fluid-dynamic flapping of a collapsible channel: Sound generation and flow limitation. J Biomech 13(3):219–230PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sovijärvi A, Vanderschoot J, Earis J (2000) Standardization of computerized respiratory sound analysis. Eur Respir Rev 10(77):585Google Scholar
  37. 37.
    Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds: advances beyond the stethoscope. Am J Respir Crit Care 156:974–987CrossRefGoogle Scholar
  38. 38.
    Earis JE, BMG C (2000) Future perspectives for respiratory sound research. Eur Respir Rev 10(77):641–646Google Scholar
  39. 39.
    Gavriely N, Nissan M, Rubin A-H, Cugell DW (1995) Spectral characteristics of chest wall breath sounds in normal subjects. Thorax 50:1292–1300PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Charbonneau G, Sudraud M, Soufflet G (1987) Method for the evaluation of flow rate from pulmonary sounds. Bull Eur Physiopathol Respir 23(3):265–270PubMedGoogle Scholar
  41. 41.
    Patel S, Lu S, Doerschuk PC, Wodicka GR (1995) Sonic phase delay from trachea to chest wall: spatial and inhaled gas dependency. Med Biol Eng Comput 33(4):571–574PubMedCrossRefGoogle Scholar
  42. 42.
    Anderson K, Aitken S, Carter R, MacLeod JE, Moran F (1990) Variation of breath sound and airway caliber induced by histamine challenge. Am Rev Respir Dis 141(5 Pt 1):1147–1150PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Malmberg LP, Sovijarvi ARA, Paajanen E, Piirila P, Haahtela T, Katila T (1994) Changes in frequency spectra of breath souds during histaminic challenge test in adult asthmatics and healthy control subjects. Chest 105(1):122–132PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pasterkamp H, Consunji-Araneta R, Oh Y, Holbrow J (1997) Chest surface mapping of lung sounds during methacholine challenge. Pediatr Pulmonol 23(1):21–30PubMedCrossRefGoogle Scholar
  45. 45.
    Alshaer H, Fernie GR, Maki E, Bradley TD (2013) Validation of an automated algorithm for detecting apneas and hypopneas by acoustic analysis of breath sounds. Sleep Med 14(6):562–571PubMedCrossRefGoogle Scholar
  46. 46.
    Cortes S, Jane R, Fiz JA, Morera J (2005) Monitoring of wheeze duration during spontaneous respiration in asthmatic patients. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 6:6141–6144Google Scholar
  47. 47.
    Eising JB, Uiterwaal CS, van der Ent CK (2014) Nocturnal wheeze measurement in preschool children. Pediatr Pulmonol 49(3):257–262PubMedCrossRefGoogle Scholar
  48. 48.
    Bentur L, Beck R, Berkowitz D, Hasanin J, Berger I, Elias N, Gavriely N (2004) Adenosine bronchial provocation with computerized wheeze detection in young infants with prolonged cough: correlation with long-term follow-up. Chest 126(4):1060–1065PubMedCrossRefGoogle Scholar
  49. 49.
    Faber TE, Kamps AW, Sjoerdsma MH, Vermeulen S, Veeger NJ, Bont LJ (2015) Computerized assessment of wheezing in children with respiratory syncytial virus bronchiolitis before and after hypertonic saline nebulization. Respir Care 60(9):1252–1256PubMedCrossRefGoogle Scholar
  50. 50.
    Beck R, Elias N, Shoval S, Tov N, Talmon G, Godfrey S, Bentur L (2007) Computerized acoustic assessment of treatment efficacy of nebulized epinephrine and albuterol in RSV bronchiolitis. BMC Pediatr 7(22):1–6Google Scholar
  51. 51.
    Sanchez I, Powell RE, Pasterkamp H (1993) Wheezing and airflow obstruction during methacholine challenge in children with cystic fibrosis and in normal children. Am Rev Respir Dis 147(3):705–709PubMedCrossRefGoogle Scholar
  52. 52.
    Epler GR, Carrington CB, Gaensler EA (1978) Crackles (rales) in the interstitial pulmonary diseases. Chest 73(3):333–339PubMedCrossRefGoogle Scholar
  53. 53.
    Piirila P, Sovijarvi ARA, Kaisla T, Rajala H-M, Katila T (1991) Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD, and heart failure. Chest 99(5):1076–1083PubMedCrossRefGoogle Scholar
  54. 54.
    Piirila P (1992) Changes in crackle characteristics during the clinical course of pneumonia. Chest 102(1):176–183PubMedCrossRefGoogle Scholar
  55. 55.
    Bohadana AB (2000) Lung sounds in asthma and chronic obstructive pulmonary disease. Monaldi Arch Chest Dis 55(6):484–487PubMedGoogle Scholar
  56. 56.
    Piirila P, Lehtola H, Zitting A, Kivisaari L, Koskinen H, Luukkonen R, Salo SP, Vehmas T, Nordman H, Sovijarvi ARA (2000) Lung sounds in asbestos induced pulmonary disorders. Eur Respir J 16:901–908PubMedCrossRefGoogle Scholar
  57. 57.
    Cottin V, Cordier JF (2012) Velcro crackles: the key for early diagnosis of idiopathic pulmonary fibrosis? Eur Respir J 40(3):519–521PubMedCrossRefGoogle Scholar
  58. 58.
    Sellares J, Hernandez-Gonzalez F, Lucena CM, Paradela M, Brito-Zeron P, Prieto-Gonzalez S, Benegas M, Cuerpo S, Espinosa G, Ramirez J, Sanchez M, Xaubet A (2016) Auscultation of Velcro crackles is associated with usual interstitial pneumonia. Medicine 95(5):2573CrossRefGoogle Scholar
  59. 59.
    Sun X, Cheetham BM, Earis JE (1998) Real time analysis of lung sounds. Technol Health Care 6(1):3–10PubMedGoogle Scholar
  60. 60.
    Jiang H, Chen J, Cao J, Mu L, Hu Z, He J (2015) Evaluation of vibration response imaging (VRI) technique and difference in VRI indices among non-smokers, active smokers and passive smokers. Med Sci Monit 21:2170–2177PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Abbas A, Fahim A (2010) An automated computerized auscultation and diagnostic system for pulmonary diseases. J Med Syst 34(6):1149–1155PubMedCrossRefGoogle Scholar
  62. 62.
    Foche-Perez I, Ramirez-Payba R, Hirigoyen-Emparanza G, Balducci-Gonzalez F, Simo-Reigadas FJ, Seoane-Pascual J, Corral-Penafiel J, Martinez-Fernandez A (2012) An open real-time tele-stethoscopy system. Biomed Eng Online 11(57):11–57Google Scholar
  63. 63.
    Palaniappan R, Sundaraj K, Sundaraj S, Huliraj N, Revadi SS (2015) A telemedicine tool to detect pulmonary pathology using computerized pulmonary acoustic signal analysis. Appl Soft Comput 37:952–959CrossRefGoogle Scholar
  64. 64.
    Yu C, Tsai TH, Huang SI, Lin CW (2013) Soft stethoscope for detecting asthma wheeze in young children. Sensors 13(6):7399–7413PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Chamberlain D, Mofor J, Fletcher R, Kodgule R (2015) Mobile stethoscope and signal processing algorithms for pulmonary screening and diagnostics. In: Global humanitarian technology conference (GHTC), 2015 IEEE, 8–11 Oct 2015. pp 385–392. doi:10.1109/GHTC.2015.7344001Google Scholar
  66. 66.
    Africa & Middle East Telecom-Week (2014) Africa & Middle East mobile factbook 2Q 2014. http://www.mikekujawski.ca/2009/03/16/latest-mobile-phone-statistics-from-africa-and-what-this-means/
  67. 67.
    Palaniappan R, Sundaraj K, Sundaraj S (2014) Artificial intelligence techniques used in respiratory sound analysis—a systematic review. Biomed Tech 59(1):7–18CrossRefGoogle Scholar
  68. 68.
    Guler EC, Sankur B, Kahya YP, Raudys S (2003) Two-stage classification of respiratory sound patterns. Comput Biol Med 35(1):67–83CrossRefGoogle Scholar
  69. 69.
    Mayorga P, Druzgalski C, Gonzalez OH, Lopez HS (2012) Modified classification of normal lung sounds applying quantile vectors. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 5(10):6346908Google Scholar
  70. 70.
    Vannuccini L, Rossi M, Pasquali G (1998) A new method to detect crackles in respiratory sounds. Technol Health Care 6(1):75–79PubMedGoogle Scholar
  71. 71.
    Lu X, Bahoura M (2008) An integrated automated system for crackles extraction and classification. Biomed Signal Process Control 3(3):244–254CrossRefGoogle Scholar
  72. 72.
    Charleston-Villalobos S, Dorantes-Mendez G, Gonzalez-Camarena R, Chi-Lem G, Carrillo JG, Aljama-Corrales T (2011) Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques. Med Biol Eng Comput 49(1):15–24PubMedCrossRefGoogle Scholar
  73. 73.
    Hadjileontiadis LJ, Panas SM (1997) Separation of discontinuous adventitious sounds from vesicular sounds using a wavelet-based filter. IEEE Trans Biomed Eng 44(12):1269–1281PubMedCrossRefGoogle Scholar
  74. 74.
    Waris M, Helisto P, Haltsonen S, Saarinen A, Sovijärvi A (1998) A new method for automatic wheeze detection. Technol Health Care 6(1):33–40PubMedGoogle Scholar
  75. 75.
    Homs-Corbera A, Jane R, Fiz JA, Morera J (2000) Algorithm for time-frequency detection and analysis of wheezes. Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology society, Vols 1–4 22:2977–2980Google Scholar
  76. 76.
    Hsueh M-L, Chien J-C, Chang F-C, Wu H-D, Chong F-C (2005) Respiratory wheeze detection system. Proceedings of the 2005 IEEE engineering in medicine and biology 27th annual conference, 1–4Google Scholar
  77. 77.
    Guntupalli KK, Alapat PM, Bandi VD, Kushnir I (2008) Validation of automatic wheeze detection in patients with obstructed airways and in healthy subjects. J Asthma 45(10):903–907PubMedCrossRefGoogle Scholar
  78. 78.
    Lin BS, Yen TS (2014) An FPGA-based rapid wheezing detection system. Int J Environ Res Public Health 11(2):1573–1593PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Huq S, Moussavi Z (2010) Automatic breath phase detection using only tracheal sounds. Conference proceedings: annual International conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 2010:272–275Google Scholar
  80. 80.
    Moussavi ZK, Leopando MT, Rempel GR (1998) Automated respiratory phase detection by acoustical means. Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society 20(1):21–24Google Scholar
  81. 81.
    Yap YL, Moussavi Z (2001) Respiratory onset detection using variance fractal dimension. IEEE Eng Med Bio Soc 2:1554–1556Google Scholar
  82. 82.
    Yildirim I, Ansari R, Moussavi Z (2008) Automated respiratory phase and onset detection using only chest sound signal. 30th annual international conference of the IEEE engineering in medicine and biology society 1–8:2578–2581Google Scholar
  83. 83.
    Suzuki A, Sumi C, Nakayama K, Mori M (1995) Real-time adaptive cancelling of ambient noise in lung sound measurement. Med Biol Eng Comput 33(5):704–708PubMedCrossRefGoogle Scholar
  84. 84.
    Chang GC, Lai YF (2010) Performance evaluation and enhancement of lung sound recognition system in two real noisy environments. Comput Methods Prog Biomed 97(2):141–150CrossRefGoogle Scholar
  85. 85.
    Hadjileontiadis LJ, Panas SM (1996) Nonlinear separation of crackles and squawks from vesicular sounds using third-order statistics. In: Engineering in medicine and biology society, 1996. Bridging disciplines for biomedicine. Proceedings of the 18th annual international conference of the IEEE, vol. 2215, 31 Oct to 3 Nov 1996, pp 2217–2219. doi:10.1109/IEMBS.1996.646504Google Scholar
  86. 86.
    Mastorocostas PA, Theocharis JB (2007) A dynamic fuzzy neural filter for separation of discontinuous adventitious sounds from vesicular sounds. Comput Biol Med 37(1):60–69PubMedCrossRefGoogle Scholar
  87. 87.
    Cortes S, Jane R, Torres A, Fiz JA, Morera J (2006) Detection and adaptive cancellation of heart sound interference in tracheal sounds. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 1:2860–2863Google Scholar
  88. 88.
    Pourazad MT, Moussavi Z, Thomas G (2006) Heart sound cancellation from lung sound recordings using time-frequency filtering. Med Biol Eng Comput 44(3):216–225PubMedCrossRefGoogle Scholar
  89. 89.
    Palaniappan R, Sundaraj K, Ahamed NU (2013) Machine learning in lung sound analysis: a systematic review. Biocybern Biomed Eng 33(3):129–135CrossRefGoogle Scholar
  90. 90.
    Effing T, Kerstjens H, van der Valk P, Zielhuis G, van der Palen J (2009) (Cost)-effectiveness of self-treatment of exacerbations on the severity of exacerbations in patients with COPD: the COPE II study. Thorax 64(11):956–962PubMedCrossRefGoogle Scholar
  91. 91.
    Casas A, Troosters T, Garcia-Aymerich J, Roca J, Hernández C, Alonso A, del Pozo F, de Toledo P, Antó JM, Rodríguez-Roisín R, Decramer M (2006) Integrated care prevents hospitalisations for exacerbations in COPD patients. Eur Respir J 28(1):123–130PubMedCrossRefGoogle Scholar
  92. 92.
    Garcia-Saez G, Rigla M, Martinez-Sarriegui I, Shalom E, Peleg M, Broens T, Pons B, Caballero-Ruiz E, Gomez EJ, Hernando ME (2014) Patient-oriented computerized clinical guidelines for mobile decision support in gestational diabetes. J Diabetes Sci Technol 8(2):238–246PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A (2015) Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors 15(10):26978–26996PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Anderson K, Qiu Y, Whittaker AR, Lucas M (2001) Breath sounds, asthma, and the mobile phone. Lancet 358(9290):1343–1344PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Reyes BA, Reljin N, Kong Y, Nam Y, Ha S, Chon KH (2016) Towards the development of a mobile phonopneumogram: automatic breath-phase classification using smartphones. Ann Biomed Eng 44(9):2746–2759PubMedCrossRefGoogle Scholar
  96. 96.
    Wallace J (2008) Lost in translation: transferring knowledge from research to clinical practice. Adv Psychiatr Treat 19(4):250–258CrossRefGoogle Scholar
  97. 97.
    Grimshaw JM, Eccles MP, Lavis JN, Hill SJ, Squires JE (2012) Knowledge translation of research findings. Implement Sci 7(50):1748–5908Google Scholar
  98. 98.
    Tetroe JM, Graham ID, Foy R, Robinson N, Eccles MP, Wensing M, Durieux P, Legare F, Nielson CP, Adily A, Ward JE, Porter C, Shea B, Grimshaw JM (2008) Health research funding agencies’ support and promotion of knowledge translation: an international study. Milbank Q 86(1):125–155PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    McKibbon KA, Lokker C, Wilczynski NL, Ciliska D, Dobbins M, Davis DA, Haynes RB, Straus SE (2010) A cross-sectional study of the number and frequency of terms used to refer to knowledge translation in a body of health literature in 2006: a tower of babel? Implement Sci 5(16):1748–5908Google Scholar
  100. 100.
    Rubio DM, Schoenbaum EE, Lee LS, Schteingart DE, Marantz PR, Anderson KE, Platt LD, Baez A, Esposito K (2010) Defining translational research: implications for training. Acad Med 85(3):470–475PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Graham ID, Logan J, Harrison MB, Straus SE, Tetroe J, Caswell W, Robinson N (2006) Lost in knowledge translation: time for a map? J Contin Educ Heal Prof 26(1):13–24CrossRefGoogle Scholar
  102. 102.
    McGrath PJ, Lingley-Pottie P, Emberly DJ, Thurston C, McLean C (2009) Integrated knowledge translation in mental health: family help as an example. J Can Acad Child Adolesc Psychiatry 18(1):30–37PubMedPubMedCentralGoogle Scholar
  103. 103.
    Bullock H, Watson A, Goering P (2010) Building for success: mental health research with an integrated knowledge translation approach. Can J Commun Ment Health 29(Special issue supplement 2010):9–21CrossRefGoogle Scholar
  104. 104.
    O'Brien K, Brooks D (2006) Two episodic illnesses: lessons learned in rehabilitation. Physiother Can 58(4):251–254CrossRefGoogle Scholar
  105. 105.
    Palange P, Noel JL, Simonds AK (2011) The European Respiratory Society: future directions in medical education. Eur Respir J 38(3):498–499PubMedCrossRefGoogle Scholar
  106. 106.
    Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN (2016) Towards the standardisation of lung sound nomenclature. Eur Respir J 47(3):724–732PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Postiaux G, Lens E (1999) Pulmonary stethacoustic nomenclature: why not a worldwide consensus? Rev Mal Respir 16(6):1075–1090PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lab 3R—Respiratory Research and Rehabilitation Laboratory, School of Health SciencesUniversity of Aveiro (ESSUA)AveiroPortugal
  2. 2.Institute for Research in Biomedicine (iBiMED)University of AveiroAveiroPortugal
  3. 3.Centro de Investigação em Tecnologias e Serviços de Saúde (CINTESIS)University of PortoPortoPortugal

Personalised recommendations