Advertisement

Breath Sounds pp 237-247 | Cite as

Respiratory Sounds: Laryngeal Origin Sounds

  • Nicola Barker
  • Heather Elphick
Chapter

Abstract

Laryngeal sounds reflect turbulence of air in the upper airway and are harsher and higher in pitch than normal lung sounds. A linear relationship between tracheal sounds and flow has been observed, and the frequency characteristics are associated with body height and length of the trachea in children.

Stridor is characterised by a high-pitched musical sound, and its presence suggests significant obstruction of the large airway. Inspiratory stridor indicates an obstruction in the extrathoracic airway, and obstruction in the intrathoracic airway results in an expiratory or biphasic sound.

Acute and chronic stridor indicate a range of underlying pathologies, some of which have been characterised further using digital sound analysis. Many studies are descriptive rather than quantitative, and there is little specific research that uses prospective and formal outcome measures before and after interventions. Acoustic analysis may have useful applications in treatment monitoring, surgical planning, voice quality analysis after laryngeal reconstruction, speech development, voice training, therapy and rehabilitation, and these potential applications require further evaluation.

The gold standard diagnostic tool for upper airway lesions in children is upper airway endoscopy, often requiring general anaesthesia. Paradoxical vocal cord dysfunction is a form of inducible laryngeal obstruction which can co-exist with asthma and is currently diagnosed using laryngoscopy during exercise. The use of acoustic analysis to study the relationship between the acoustic characteristics of stridor and localisation of the obstructive lesion has the potential to reduce the need for invasive procedures; however normative data are needed in order to understand the significance of changes in acoustic parameters that would indicate any specific pathology.

References

  1. 1.
    Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds advances beyond the stethoscope. Am J Respir Crit Care Med 156:974–987CrossRefGoogle Scholar
  2. 2.
    Yadollahi A, Moussavi Z (2008) Comparison of flow-sound relationship for different features of tracheal sound. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society, pp 805–808Google Scholar
  3. 3.
    Soufflet G, Charbonneau G, Polit M, Attal P, Denjean A, Escourrou P, Gaultier C (1990) Interaction between tracheal sound and flow rate: a comparison of some different flow evaluations from lung sounds. IEEE Transactions on Bio-medical Engineering 37(4):384–391. 0018–9294 (April 1990)CrossRefGoogle Scholar
  4. 4.
    Yadollahi A, Moussavi Z (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Transactions on Bio-medical Engineering 53(4):662–668. 0018–9294 (April 2006)CrossRefGoogle Scholar
  5. 5.
    Sarkar M, Madabhavi I, Niranjan N, Dogra M (2015) Auscultation of the respiratory system. Ann Thorac Med 10(3):158–168CrossRefGoogle Scholar
  6. 6.
    Reichert S, Gass R, Brandt C, Andrès E (2008) Analysis of respiratory sounds: state of the art. Clin Med Circ Respirat Pulm Med 2:45–58PubMedPubMedCentralGoogle Scholar
  7. 7.
    Andrès E, Brandt C, Gass R, Reichert S (2010) New developments in the field of human auscultation. Rev Pneumol Clin 66:209–213CrossRefGoogle Scholar
  8. 8.
    Gavriely N, Palti Y, Alroy G (1981) Spectral characteristics of normal breath sounds. J Appl Physiol Respir Environ Exerc Physiol 50:307–314PubMedGoogle Scholar
  9. 9.
    Sanchez I, Pasterkamp H (1993) Tracheal sound spectra depend on body height. Am Rev Respir Dis 148:1083–1087CrossRefGoogle Scholar
  10. 10.
    Pasterkamp H, Schafer J, Wodicka GR (1996) Posture-dependent change of tracheal sounds at standardised flows in patients with obstructive sleep apnea. Chest 110:1493–1498CrossRefGoogle Scholar
  11. 11.
    Nakano H, Hayashi M, Ohshima E, Nishikata N, Shinohara T (2004) Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep 27:951–957CrossRefGoogle Scholar
  12. 12.
    Cotton R, Reilly JS (1983) Stridor and airway obstruction. In: Bluestone CD, Stool SE (eds) Pediatric otolaryngology. Saunders, Philadelphia PA, pp 1190–1204Google Scholar
  13. 13.
    Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370:744–751CrossRefGoogle Scholar
  14. 14.
    Elphick HE, Sherlock P, Foxall G, Simpson EJ, Shiell NA, Primhak RA, Everard ML (2001) Survey of respiratory sounds in infants. Arch Dis Child 84:35–39CrossRefGoogle Scholar
  15. 15.
    Sovijarvi ARA, Malmberg LP, Charbonneau G, Vanderschoot J, Dalmasso F, Sacco C, Rossi M, Earis JE (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10:591–596Google Scholar
  16. 16.
    Ida JB, Thompson DM (2014) Pediatric stridor. Otolaryngol Clin N Am 47:795–819CrossRefGoogle Scholar
  17. 17.
    Zwartenkot JW, Hoeve HLJ, Borgstein J (2010) Inter-observer reliability of localization of recorded stridor sounds in children. Int J Pediatr Otorhinolaryngol 74(10):1184–1188. 0165–5876CrossRefGoogle Scholar
  18. 18.
    Raes J, Michelsson K, Dehaen F, Despontin M (1982) Cry analysis in infants with infectious and congenital disorders of the larynx. Int J Pediatr Otorhinolaryngol 4(2):157–169CrossRefGoogle Scholar
  19. 19.
    van der Velden WC, van Zuijlen AH, de Jong AT, Lynch CT, Hoeve LJ, Bijl H (2016) Acoustic simulation of a patient's obstructed airway. Comput Methods Biomech Biomed Engin 19(2):144–158.  https://doi.org/10.1080/10255842.2014.996877. Epub 2015 Jan 8CrossRefPubMedGoogle Scholar
  20. 20.
    Koike Y, Takahashi H, Calcaterra TC (1977) Acoustic measures for detecting laryngeal pathology. Acta Otolaryngol 84(1–2):105–117CrossRefGoogle Scholar
  21. 21.
    Pasterkamp H, Carson C, Daien D, Oh Y (1989) Digital respirosonography: new images of lung sounds. Chest 96:1405–1412CrossRefGoogle Scholar
  22. 22.
    Pasterkamp H, Sanchez I (1992) Tracheal sounds in upper airway obstruction. Chest 102(3):963–965CrossRefGoogle Scholar
  23. 23.
    Thorne MC, Garetz SL (2016) Laryngomalacia: review and summary of current clinical practice in 2015. Paediatr Respir Rev 17:3–8.  https://doi.org/10.1016/j.prrv.2015.02.002. Epub 2015 Feb 28CrossRefPubMedGoogle Scholar
  24. 24.
    Goberman AM, Robb MP (2005) Acoustic characteristics of crying in infantile laryngomalacia. Logoped Phoniatr Vocol 30(2):79–84CrossRefGoogle Scholar
  25. 25.
    Isaac A, Zhang H, Soon SR, Campbell S, El-Hakim H (2016) A systematic review of the evidence on spontaneous resolution of laryngomalacia and its symptoms. Int J Pediatr Otorhinolaryngol 83:78–83.  https://doi.org/10.1016/j.ijporl.2016.01.028. ReviewCrossRefPubMedGoogle Scholar
  26. 26.
    Kaushal M, Upadhyay A, Aggarwal R, Deorari AK (2005) Congenital stridor due to bilateral vocal cord palsy. Indian J Pediatr 72(5):443–444CrossRefGoogle Scholar
  27. 27.
    Yonemaru M, Kikuchi K, Mori M, Kawai A, Abe T, Kawashiro T et al (1993) Detection of tracheal stenosis by frequency analysis of tracheal sounds. J Appl Physiol 75(2):605–612CrossRefGoogle Scholar
  28. 28.
    Shah J, White K, Dohar J (2015) Vocal characteristics of congenital anterior glottic webs in children: a case report. Int J Pediatr Otorhinolaryngol 79(6):941–945CrossRefGoogle Scholar
  29. 29.
    Wang CF, Wang YS, Sun YF (2016) Treatment of infantile subglottic hemangioma with oral propranolol. Pediatr Int 58(5):385–388.  https://doi.org/10.1111/ped.12813 CrossRefPubMedGoogle Scholar
  30. 30.
    Broeks IJ, Hermans DJ, Dassel AC, van der Vleuten CJ, van Beynum IM (2013) Propranolol treatment in life-threatening airway hemangiomas: a case series and review of literature. Int J Pediatr Otorhinolaryngol 77(11):1791–1800.  https://doi.org/10.1016/j.ijporl.2013.08.011. ReviewCrossRefPubMedGoogle Scholar
  31. 31.
    Hufnagle J (1982) Acoustic analysis of fundamental frequencies of voices of children with and without vocal nodules. Percept Mot Skills 55(2):427–432CrossRefGoogle Scholar
  32. 32.
    Niedzielska G, Glijer E, Niedzielski A (2001) Acoustic analysis of voice in children with noduli vocales. Int J Pediatr Otorhinolaryngol 60(2):119–122CrossRefGoogle Scholar
  33. 33.
    de Groot EP (2011) Breathing abnormalities in children with breathlessness. Paediatr Respir Rev 12(1):83–87CrossRefGoogle Scholar
  34. 34.
    Noyes BE, Kemp JS (2007) Vocal cord dysfunction in children. Paediatr Respir Rev 8(2):155–163CrossRefGoogle Scholar
  35. 35.
    Kenn K, Balkissoon R (2011) Vocal cord dysfunction: what do we know? Eur Respir J 37(1):194–200CrossRefGoogle Scholar
  36. 36.
    Halvorsen T, Walsted ES, Bucca C et al (2017) Inducible laryngeal obstruction: an official joint European Respiratory Society and European Laryngological Society statement. Eur Respir J 50:1602221.  https://doi.org/10.1183/13993003.02221-2016 CrossRefPubMedGoogle Scholar
  37. 37.
    Shusterman D (2002) Review of the upper airway, including olfaction, as mediator of symptoms. Environ Health Perspect 110(Suppl 4):649–653CrossRefGoogle Scholar
  38. 38.
    Tilles SA, Inglis AF (2009) Masqueraders of exercise-induced vocal cord dysfunction. J Allergy Clin Immunol 124(2):377–378CrossRefGoogle Scholar
  39. 39.
    Bent JP, Miller DA, Kim JW, Bauman NM, Wilson JS, Smith RJ (1996) Pediatric exercise-induced laryngomalacia. Ann Otol Rhinol Laryngol 105(3):169–175CrossRefGoogle Scholar
  40. 40.
    Fahey JT, Bryant NJ, Karas D, Goldberg B, DeStefano R, Gracco LC (2005) Exercise-induced stridor due to abnormal movement of the arytenoid area: Videoendoscopic diagnosis and characterization of the “at risk” group. Pediatr Pulmonol 39(1):51–55CrossRefGoogle Scholar
  41. 41.
    Heimdal J-H, Roksund OD, Halvorsen T, Skadberg BT, Olofsson J (2006) Continuous laryngoscopy exercise test: a method for visualizing laryngeal dysfunction during exercise. Laryngoscope 116(1):52–57CrossRefGoogle Scholar
  42. 42.
    Maat R, Roksund O, Olofsson J, Halvorsen T, Skadberg B, Heimdal J-H (2007) Surgical treatment of exercise-induced laryngeal dysfunction. Eur Arch Otorhinolaryngol 264(4):401–407CrossRefGoogle Scholar
  43. 43.
    Røksund OD, Maat RC, Heimdal JH, Olofsson J, Skadberg BT, Halvorsen T (2009) Exercise induced dyspnea in the young. Larynx as the bottleneck of the airways. Respir Med 103(12):1911–1918CrossRefGoogle Scholar
  44. 44.
    Maat R, Røksund O, Halvorsen T, Skadberg B, Olofsson J, Ellingsen T et al (2009) Audiovisual assessment of exercise-induced laryngeal obstruction: reliability and validity of observations. Eur Arch Otorhinolaryngol 266(12):1929–1936CrossRefGoogle Scholar
  45. 45.
    Christensen P, Thomsen S, Rasmussen N, Backer V (2010) Exercise-induced laryngeal obstructions objectively assessed using EILOMEA. Eur Arch Otorhinolaryngol 267(3):401–407CrossRefGoogle Scholar
  46. 46.
    Morris MJ, Allan PF, Perkins PJ (2006) Vocal cord dysfunction: etiologies and treatment. Clin Pulm Med 13(2):73–86CrossRefGoogle Scholar
  47. 47.
    Rundell KW, Spiering BA (2003) Inspiratory stridor in elite athletes. Chest 123(2):468–474CrossRefGoogle Scholar
  48. 48.
    Barker N, Thevasagayam R, Ugonna K, Smith L (2015) Paediatric paradoxical vocal cord dysfunction: Diagnosis and treatment in a multidisciplinary clinic. European Respiratory Journal Sep 46(Suppl 59):PA2809.  https://doi.org/10.1183/13993003.congress-2015.PA2809 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Paediatric Respiratory MedicineSheffield Children’s HospitalSheffieldUK

Personalised recommendations