Skip to main content

Respiratory Sounds: Laryngeal Origin Sounds

  • Chapter
  • First Online:
Breath Sounds

Abstract

Laryngeal sounds reflect turbulence of air in the upper airway and are harsher and higher in pitch than normal lung sounds. A linear relationship between tracheal sounds and flow has been observed, and the frequency characteristics are associated with body height and length of the trachea in children.

Stridor is characterised by a high-pitched musical sound, and its presence suggests significant obstruction of the large airway. Inspiratory stridor indicates an obstruction in the extrathoracic airway, and obstruction in the intrathoracic airway results in an expiratory or biphasic sound.

Acute and chronic stridor indicate a range of underlying pathologies, some of which have been characterised further using digital sound analysis. Many studies are descriptive rather than quantitative, and there is little specific research that uses prospective and formal outcome measures before and after interventions. Acoustic analysis may have useful applications in treatment monitoring, surgical planning, voice quality analysis after laryngeal reconstruction, speech development, voice training, therapy and rehabilitation, and these potential applications require further evaluation.

The gold standard diagnostic tool for upper airway lesions in children is upper airway endoscopy, often requiring general anaesthesia. Paradoxical vocal cord dysfunction is a form of inducible laryngeal obstruction which can co-exist with asthma and is currently diagnosed using laryngoscopy during exercise. The use of acoustic analysis to study the relationship between the acoustic characteristics of stridor and localisation of the obstructive lesion has the potential to reduce the need for invasive procedures; however normative data are needed in order to understand the significance of changes in acoustic parameters that would indicate any specific pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pasterkamp H, Kraman SS, Wodicka GR (1997) Respiratory sounds advances beyond the stethoscope. Am J Respir Crit Care Med 156:974–987

    Article  CAS  Google Scholar 

  2. Yadollahi A, Moussavi Z (2008) Comparison of flow-sound relationship for different features of tracheal sound. In: Annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society, pp 805–808

    Google Scholar 

  3. Soufflet G, Charbonneau G, Polit M, Attal P, Denjean A, Escourrou P, Gaultier C (1990) Interaction between tracheal sound and flow rate: a comparison of some different flow evaluations from lung sounds. IEEE Transactions on Bio-medical Engineering 37(4):384–391. 0018–9294 (April 1990)

    Article  CAS  Google Scholar 

  4. Yadollahi A, Moussavi Z (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Transactions on Bio-medical Engineering 53(4):662–668. 0018–9294 (April 2006)

    Article  Google Scholar 

  5. Sarkar M, Madabhavi I, Niranjan N, Dogra M (2015) Auscultation of the respiratory system. Ann Thorac Med 10(3):158–168

    Article  Google Scholar 

  6. Reichert S, Gass R, Brandt C, Andrès E (2008) Analysis of respiratory sounds: state of the art. Clin Med Circ Respirat Pulm Med 2:45–58

    PubMed  PubMed Central  Google Scholar 

  7. Andrès E, Brandt C, Gass R, Reichert S (2010) New developments in the field of human auscultation. Rev Pneumol Clin 66:209–213

    Article  Google Scholar 

  8. Gavriely N, Palti Y, Alroy G (1981) Spectral characteristics of normal breath sounds. J Appl Physiol Respir Environ Exerc Physiol 50:307–314

    CAS  PubMed  Google Scholar 

  9. Sanchez I, Pasterkamp H (1993) Tracheal sound spectra depend on body height. Am Rev Respir Dis 148:1083–1087

    Article  CAS  Google Scholar 

  10. Pasterkamp H, Schafer J, Wodicka GR (1996) Posture-dependent change of tracheal sounds at standardised flows in patients with obstructive sleep apnea. Chest 110:1493–1498

    Article  CAS  Google Scholar 

  11. Nakano H, Hayashi M, Ohshima E, Nishikata N, Shinohara T (2004) Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep 27:951–957

    Article  Google Scholar 

  12. Cotton R, Reilly JS (1983) Stridor and airway obstruction. In: Bluestone CD, Stool SE (eds) Pediatric otolaryngology. Saunders, Philadelphia PA, pp 1190–1204

    Google Scholar 

  13. Bohadana A, Izbicki G, Kraman SS (2014) Fundamentals of lung auscultation. N Engl J Med 370:744–751

    Article  CAS  Google Scholar 

  14. Elphick HE, Sherlock P, Foxall G, Simpson EJ, Shiell NA, Primhak RA, Everard ML (2001) Survey of respiratory sounds in infants. Arch Dis Child 84:35–39

    Article  CAS  Google Scholar 

  15. Sovijarvi ARA, Malmberg LP, Charbonneau G, Vanderschoot J, Dalmasso F, Sacco C, Rossi M, Earis JE (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10:591–596

    Google Scholar 

  16. Ida JB, Thompson DM (2014) Pediatric stridor. Otolaryngol Clin N Am 47:795–819

    Article  Google Scholar 

  17. Zwartenkot JW, Hoeve HLJ, Borgstein J (2010) Inter-observer reliability of localization of recorded stridor sounds in children. Int J Pediatr Otorhinolaryngol 74(10):1184–1188. 0165–5876

    Article  Google Scholar 

  18. Raes J, Michelsson K, Dehaen F, Despontin M (1982) Cry analysis in infants with infectious and congenital disorders of the larynx. Int J Pediatr Otorhinolaryngol 4(2):157–169

    Article  CAS  Google Scholar 

  19. van der Velden WC, van Zuijlen AH, de Jong AT, Lynch CT, Hoeve LJ, Bijl H (2016) Acoustic simulation of a patient's obstructed airway. Comput Methods Biomech Biomed Engin 19(2):144–158. https://doi.org/10.1080/10255842.2014.996877. Epub 2015 Jan 8

    Article  PubMed  Google Scholar 

  20. Koike Y, Takahashi H, Calcaterra TC (1977) Acoustic measures for detecting laryngeal pathology. Acta Otolaryngol 84(1–2):105–117

    Article  CAS  Google Scholar 

  21. Pasterkamp H, Carson C, Daien D, Oh Y (1989) Digital respirosonography: new images of lung sounds. Chest 96:1405–1412

    Article  CAS  Google Scholar 

  22. Pasterkamp H, Sanchez I (1992) Tracheal sounds in upper airway obstruction. Chest 102(3):963–965

    Article  CAS  Google Scholar 

  23. Thorne MC, Garetz SL (2016) Laryngomalacia: review and summary of current clinical practice in 2015. Paediatr Respir Rev 17:3–8. https://doi.org/10.1016/j.prrv.2015.02.002. Epub 2015 Feb 28

    Article  PubMed  Google Scholar 

  24. Goberman AM, Robb MP (2005) Acoustic characteristics of crying in infantile laryngomalacia. Logoped Phoniatr Vocol 30(2):79–84

    Article  Google Scholar 

  25. Isaac A, Zhang H, Soon SR, Campbell S, El-Hakim H (2016) A systematic review of the evidence on spontaneous resolution of laryngomalacia and its symptoms. Int J Pediatr Otorhinolaryngol 83:78–83. https://doi.org/10.1016/j.ijporl.2016.01.028. Review

    Article  PubMed  Google Scholar 

  26. Kaushal M, Upadhyay A, Aggarwal R, Deorari AK (2005) Congenital stridor due to bilateral vocal cord palsy. Indian J Pediatr 72(5):443–444

    Article  CAS  Google Scholar 

  27. Yonemaru M, Kikuchi K, Mori M, Kawai A, Abe T, Kawashiro T et al (1993) Detection of tracheal stenosis by frequency analysis of tracheal sounds. J Appl Physiol 75(2):605–612

    Article  CAS  Google Scholar 

  28. Shah J, White K, Dohar J (2015) Vocal characteristics of congenital anterior glottic webs in children: a case report. Int J Pediatr Otorhinolaryngol 79(6):941–945

    Article  Google Scholar 

  29. Wang CF, Wang YS, Sun YF (2016) Treatment of infantile subglottic hemangioma with oral propranolol. Pediatr Int 58(5):385–388. https://doi.org/10.1111/ped.12813

    Article  CAS  PubMed  Google Scholar 

  30. Broeks IJ, Hermans DJ, Dassel AC, van der Vleuten CJ, van Beynum IM (2013) Propranolol treatment in life-threatening airway hemangiomas: a case series and review of literature. Int J Pediatr Otorhinolaryngol 77(11):1791–1800. https://doi.org/10.1016/j.ijporl.2013.08.011. Review

    Article  PubMed  Google Scholar 

  31. Hufnagle J (1982) Acoustic analysis of fundamental frequencies of voices of children with and without vocal nodules. Percept Mot Skills 55(2):427–432

    Article  CAS  Google Scholar 

  32. Niedzielska G, Glijer E, Niedzielski A (2001) Acoustic analysis of voice in children with noduli vocales. Int J Pediatr Otorhinolaryngol 60(2):119–122

    Article  CAS  Google Scholar 

  33. de Groot EP (2011) Breathing abnormalities in children with breathlessness. Paediatr Respir Rev 12(1):83–87

    Article  Google Scholar 

  34. Noyes BE, Kemp JS (2007) Vocal cord dysfunction in children. Paediatr Respir Rev 8(2):155–163

    Article  Google Scholar 

  35. Kenn K, Balkissoon R (2011) Vocal cord dysfunction: what do we know? Eur Respir J 37(1):194–200

    Article  CAS  Google Scholar 

  36. Halvorsen T, Walsted ES, Bucca C et al (2017) Inducible laryngeal obstruction: an official joint European Respiratory Society and European Laryngological Society statement. Eur Respir J 50:1602221. https://doi.org/10.1183/13993003.02221-2016

    Article  PubMed  Google Scholar 

  37. Shusterman D (2002) Review of the upper airway, including olfaction, as mediator of symptoms. Environ Health Perspect 110(Suppl 4):649–653

    Article  Google Scholar 

  38. Tilles SA, Inglis AF (2009) Masqueraders of exercise-induced vocal cord dysfunction. J Allergy Clin Immunol 124(2):377–378

    Article  Google Scholar 

  39. Bent JP, Miller DA, Kim JW, Bauman NM, Wilson JS, Smith RJ (1996) Pediatric exercise-induced laryngomalacia. Ann Otol Rhinol Laryngol 105(3):169–175

    Article  Google Scholar 

  40. Fahey JT, Bryant NJ, Karas D, Goldberg B, DeStefano R, Gracco LC (2005) Exercise-induced stridor due to abnormal movement of the arytenoid area: Videoendoscopic diagnosis and characterization of the “at risk” group. Pediatr Pulmonol 39(1):51–55

    Article  Google Scholar 

  41. Heimdal J-H, Roksund OD, Halvorsen T, Skadberg BT, Olofsson J (2006) Continuous laryngoscopy exercise test: a method for visualizing laryngeal dysfunction during exercise. Laryngoscope 116(1):52–57

    Article  Google Scholar 

  42. Maat R, Roksund O, Olofsson J, Halvorsen T, Skadberg B, Heimdal J-H (2007) Surgical treatment of exercise-induced laryngeal dysfunction. Eur Arch Otorhinolaryngol 264(4):401–407

    Article  Google Scholar 

  43. Røksund OD, Maat RC, Heimdal JH, Olofsson J, Skadberg BT, Halvorsen T (2009) Exercise induced dyspnea in the young. Larynx as the bottleneck of the airways. Respir Med 103(12):1911–1918

    Article  Google Scholar 

  44. Maat R, Røksund O, Halvorsen T, Skadberg B, Olofsson J, Ellingsen T et al (2009) Audiovisual assessment of exercise-induced laryngeal obstruction: reliability and validity of observations. Eur Arch Otorhinolaryngol 266(12):1929–1936

    Article  Google Scholar 

  45. Christensen P, Thomsen S, Rasmussen N, Backer V (2010) Exercise-induced laryngeal obstructions objectively assessed using EILOMEA. Eur Arch Otorhinolaryngol 267(3):401–407

    Article  Google Scholar 

  46. Morris MJ, Allan PF, Perkins PJ (2006) Vocal cord dysfunction: etiologies and treatment. Clin Pulm Med 13(2):73–86

    Article  Google Scholar 

  47. Rundell KW, Spiering BA (2003) Inspiratory stridor in elite athletes. Chest 123(2):468–474

    Article  Google Scholar 

  48. Barker N, Thevasagayam R, Ugonna K, Smith L (2015) Paediatric paradoxical vocal cord dysfunction: Diagnosis and treatment in a multidisciplinary clinic. European Respiratory Journal Sep 46(Suppl 59):PA2809. https://doi.org/10.1183/13993003.congress-2015.PA2809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Elphick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barker, N., Elphick, H. (2018). Respiratory Sounds: Laryngeal Origin Sounds. In: Priftis, K., Hadjileontiadis, L., Everard, M. (eds) Breath Sounds. Springer, Cham. https://doi.org/10.1007/978-3-319-71824-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71824-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71823-1

  • Online ISBN: 978-3-319-71824-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics