Skip to main content

Use of Testicular Sperm for ICSI: Pro

  • Chapter
  • First Online:
  • 1016 Accesses

Abstract

Spermatozoa retrieved from the testis of men with high levels of seminal sperm DNA fragmentation (SDF) tend to have better DNA quality. Given the negative impact of SDF on assisted reproductive technology (ART) outcomes, an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (TESTI-ICSI). In this chapter, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this type of intervention. The rationale of using TESTI-ICSI is to bypass post-testicular induced DNA fragmentation that occurs mainly by reactive oxygen species (ROS) during sperm transport through the epididymis. As a matter of fact, testicular sperm are shown to have three- to fivefold lower DNA fragmentation than ejaculated sperm. The strength of this method is to maximize oocyte fertilization by genomically intact testicular spermatozoa and to increase the chances of creating a normal embryonic genome and the likelihood of live birth, as recently demonstrated. The weaknesses are the limited evidence available and the invasiveness of sperm retrieval, which has potential complications. However, ample opportunities exist to investigate the effectiveness of TESTI-ICSI in other patient subsets, including cryptozoospermia, repeated implantation failure, and repeated miscarriage, as well as to compare TESTI-ICSI to other laboratory preparation methods used to deselect sperm with damaged DNA. Lastly, the threats relate to the possibility of using testicular sperm with putative deficiencies that would be blocked in its ontogeny during the maturation process. In conclusion, current data indicate that the use of testicular sperm is associated with improved ICSI outcomes in men with oligozoospermia and high SDF. Testicular sperm retrieval should be considered when performing ICSI in such cases, provided less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required until the safety of this strategy to the health of offspring is confirmed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol. 2014;40:443–53.

    Article  PubMed  Google Scholar 

  2. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103:18–25.

    Google Scholar 

  3. Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38:576–94.

    Article  PubMed  Google Scholar 

  4. Brandes M, Hamilton CJ, De Bruin JP, Nelen WL, Kremer JA. The relative contribution of IVF to the total ongoing pregnancy rate in a subfertile cohort. Hum Reprod. 2010;25:118–26.

    Article  CAS  PubMed  Google Scholar 

  5. Esteves SC. A clinical appraisal of the genetic basis in unexplained male infertility. J Hum Reprod Sci. 2013;6:176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Esteves SC, Chan P. A systematic review of recent clinical practice guidelines and best practice statements for the evaluation of the infertile male. Int Urol Nephrol. 2015;47:1441–56.

    Article  PubMed  Google Scholar 

  7. Lewis SE, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod BioMed Online. 2013;27:325–37.

    Article  CAS  PubMed  Google Scholar 

  8. Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A, Fernández JL. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with. Int Urol Nephrol. 2015;47:1471–7.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis SE. Should sperm DNA fragmentation testing be included in the male infertility work-up? Reprod BioMed Online. 2015;31:134–7.

    Article  CAS  PubMed  Google Scholar 

  10. Gosálvez J, Lopez-Fernandez C, Fernandez JL, Esteves SC, Johnston SD. Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotechnol Fertil. 2015;4:1–16.

    Article  Google Scholar 

  11. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.

    Article  CAS  PubMed  Google Scholar 

  12. Esteves SC, Sharma RK, Gosálvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46:1037–52.

    Article  PubMed  Google Scholar 

  13. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28:164–71.

    Article  PubMed  Google Scholar 

  14. Esteves SC. Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet. 2016. https://doi.org/10.1007/s10815–016–0763–8.

    Google Scholar 

  15. Feijo CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101:58–63.

    Article  CAS  PubMed  Google Scholar 

  16. Majzoub A, Esteves SC, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18:205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  CAS  PubMed  Google Scholar 

  18. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82:378–83.

    Article  PubMed  Google Scholar 

  19. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41.

    Article  CAS  PubMed  Google Scholar 

  20. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  CAS  PubMed  Google Scholar 

  21. Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94:549–57.

    Article  PubMed  Google Scholar 

  22. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27:2908–17.

    Article  CAS  PubMed  Google Scholar 

  23. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23:2663–8.

    Article  CAS  PubMed  Google Scholar 

  24. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  CAS  PubMed  Google Scholar 

  25. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW, Glaser RL, Pearson FS, Evenson D. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A. 2006;103:9601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Belloc S, Cohen-Bacrie P, Benkhalifa M, Cohen-Bacrie M, De MJ, Hazout A, et al. Effect of maternal and paternal age on pregnancy and miscarriage rates after intrauterine insemination. Reprod BioMed Online. 2008;17:392–7.

    Article  PubMed  Google Scholar 

  27. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril. 2010;93:1027–36.

    Article  CAS  PubMed  Google Scholar 

  28. Ji J, Pan C, Fei Q, Ni W, Yang X, Zhang L, et al. Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserve. Fertil Steril. 2015;103:910–6.

    Article  Google Scholar 

  29. Wang YJ, Zhang RQ, Lin YJ, Zhang RG, Zhang WL. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod BioMed Online. 2012;25:307–14.

    Article  CAS  PubMed  Google Scholar 

  30. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26:427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abad C, Amengual ML, Gosálvez J, Coward K, Hannaoui N, Benet J, et al. Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia. 2013;45:211–6.

    Article  CAS  PubMed  Google Scholar 

  32. Agarwal A, Gupta S, Du Plessis S, Sharma R, Esteves SC, Cirenza C, Eliwa J, Al-Najjar W, Kumaresan D, Haroun N, Philby S, Sabanegh E. Abstinence time and its impact on basic and advanced semen parameters. Urology. 2016;94:102–10.

    Article  PubMed  Google Scholar 

  33. Raziel A, Friedler S, Schachter M, Kaufman S, Omanski A, Soffer Y, et al. Influence of a short or long abstinence period on semen parameters in the ejaculate of patients with nonobstructive azoospermia. Fertil Steril. 2001;76:485–90.

    Article  CAS  PubMed  Google Scholar 

  34. Gosálvez J, González-Martínez M, López-Fernández C, Fernández JL, Sánchez-Martín P. Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil Steril. 2011;96:1083–6.

    Article  PubMed  Google Scholar 

  35. Said TM, Grunewald S, Paasch U, Rasch M, Agarwal A, Glander HJ. Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod BioMed Online. 2005;10:740–6.

    Article  PubMed  Google Scholar 

  36. Sharma RK, Kattoor AJ, Ghulmiyyah J, Agarwal A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med. 2015;61:1–12.

    Article  CAS  PubMed  Google Scholar 

  37. Parmegiani L, Cognigni GE, Bernardi S, Troilo E, Taraborrelli S, Arnone A, et al. Comparison of two ready-to-use systems designed for sperm-hyaluronic acid binding selection before intracytoplasmic sperm injection: PICSI vs. sperm slow: a prospective, randomized trial. Fertil Steril. 2012;98:632–7.

    Article  PubMed  Google Scholar 

  38. Antinori M, Licata E, Dani G, Cerusico F, Versaci C, d’Angelo D, et al. Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod BioMed Online. 2008;16:835–41.

    Article  PubMed  Google Scholar 

  39. Cassuto NG, Hazout A, Bouret D, Balet R, Larue L, Benifla JL, et al. Low birth defects by deselecting abnormal spermatozoa before ICSI. Reprod BioMed Online. 2014;28:47–53.

    Article  PubMed  Google Scholar 

  40. Gosálvez J, Migueles B, López-Fernández C, Sanchéz-Martín F, Sáchez-Martín P. Single sperm selection and DNA fragmentation analysis: the case of MSOME/IMSI. Nat Sci. 2013;5:7–14.

    Google Scholar 

  41. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20:226–30.

    Article  PubMed  Google Scholar 

  42. Steele EK, McClure N, Maxwell RJ, Lewis SE. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod. 1999;5:831–5.

    Article  CAS  PubMed  Google Scholar 

  43. Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod. 2005;20:3101–8.

    Article  CAS  PubMed  Google Scholar 

  44. Britan A, Maffre V, Tone S, Drevet JR. Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res. 2006;324:301–10.

    Article  CAS  PubMed  Google Scholar 

  45. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10:26–37.

    Article  CAS  PubMed  Google Scholar 

  46. Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129:505–14.

    Article  CAS  PubMed  Google Scholar 

  47. Rubes J, Selevan SG, Sram RJ, Evenson DP, Perreault SD. GSTM1 genotype influences the susceptibility of men to sperm DNA damage associated with exposure to air pollution. Mut Res. 2007;625:20–8.

    Article  CAS  Google Scholar 

  48. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–90.

    Article  PubMed  Google Scholar 

  49. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  50. Esteves SC, Sánchez-Martín F, Sánchez-Martín P, Schneider DT, Gosálvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104:1398–405.

    Article  PubMed  Google Scholar 

  51. Moskovtsev SI, Jarvi K, Mullen JBM, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93:1142–6.

    Article  CAS  PubMed  Google Scholar 

  52. Mehta A, Bolyakov A, Schlegel PN, Paduch DA. Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil Steril. 2015;104:1382–7.

    Article  PubMed  Google Scholar 

  53. Esteves SC, Miyaoka R, Agarwal A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol. 2011;37:570–83.

    Article  PubMed  Google Scholar 

  54. Gosalvez J, Gonzalez-Martínez M, Lopez-Fernandez C, Fernandez JL, Sanchez-Martín P. Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil Steril. 2011;96:1083–6.

    Article  PubMed  Google Scholar 

  55. Ben-Ami I, Raziel A, Strassburger D, Komarovsky D, Ron-El R, Friedler S. Intracytoplasmic sperm injection outcome of ejaculated versus extracted testicular spermatozoa in cryptozoospermic men. Fertil Steril. 2013;99:1867–71.

    Article  PubMed  Google Scholar 

  56. Weissman A, Horowitz E, Ravhon A, Nahum H, Golan A, Levran D. Pregnancies and live births following ICSI with testicular spermatozoa after repeated implantation failure using ejaculated spermatozoa. Reprod BioMed Online. 2008;17:605–9.

    Article  PubMed  Google Scholar 

  57. Abhyankar N, Kathrins M, Niederberger C. Use of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with cryptozoospermia: a meta-analysis. Fertil Steril. 2016;105:1469–75.

    Article  PubMed  Google Scholar 

  58. Hauser R, Bibi G, Yogev L, Carmon A, Azem F, Botchan A, Yavetz H, Klieman SE, Lehavi O, Amit A, Ben-Yosef D. Virtual azoospermia and cryptozoospermia—fresh/frozen testicular or ejaculate sperm for better IVF outcome? J Androl. 2011;32:484–90.

    Article  PubMed  Google Scholar 

  59. Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102:998–1005.

    Article  CAS  PubMed  Google Scholar 

  60. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016;4:903–10.

    Article  CAS  PubMed  Google Scholar 

  61. García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ, Navarro J, et al. Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steri1. 2011;95:105–9.

    Article  Google Scholar 

  62. Muriel L, Goyanes V, Segrelles E, Gosalvez J, Alvarez JG, Fernandez JL. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and FISH analysis. J Androl. 2007;28:38–49.

    Article  CAS  PubMed  Google Scholar 

  63. Bernardine L, Gianaroli L, Fortini D, Conte N, Magli C, Cavani S, et al. Frequency of hyper-hypohaploidy and diploidy in ejaculate, epididymal and testicular germ cells of infertile patients. Hum Reprod. 2000;15:2165–72.

    Article  Google Scholar 

  64. Mateizel I, Verheyen G, Van Assche E, Tournaye H, Liebaers I, Van Steirteghem A. FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum Reprod. 2002;17:2249–57.

    Article  CAS  PubMed  Google Scholar 

  65. Palermo GD, Colombero LT, Hariprashad JJ, Schlegel PN, Rosenwaks Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum Reprod. 2002;17:570–5.

    Article  PubMed  Google Scholar 

  66. Egozcue J, Sarrate Z, Codina-Pascual M, Egozcue S, Oliver-Bonet M, Blanco J, et al. Meiotic abnormalities in infertile males. Cytogenet Genome Res. 2005;11:337–42.

    Article  Google Scholar 

  67. Moskovtsev SI, Alladin N, Lo KC, Jarvi K, Mullen JBM, Librach CL. A comparison of ejaculated and testicular spermatozoa aneuploidy rates in patients with high sperm DNA damage. Syst Biol Reprod Med. 2012;58:142–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro C. Esteves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esteves, S.C., Roque, M. (2018). Use of Testicular Sperm for ICSI: Pro. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics