Skip to main content

Sperm Chromatin: An Overview

  • Chapter
  • First Online:
A Clinician's Guide to Sperm DNA and Chromatin Damage

Abstract

The changes in chromatin organization that occur as mammalian spermatocytes differentiate into mature sperm are among the most extreme that have been observed in biology. The DNA in each spermatocyte chromosome is packaged by histones into a continuous string of nucleosomal subunits that coil into higher-ordered 30 nm fibers. These fibers interact with each other, many other proteins, and the nuclear matrix to provide a predominantly soluble, loosely packed genome similar to that found in all other somatic cells. Genes required for spermatocyte function are actively transcribed and translated up until the cell commits to undergo two meiotic divisions that lead to the production of four spermatids, each containing a single copy of the paternal genome. The physical and functional state of the chromatin in each spermatid is then progressively transformed via a series of DNA-binding protein transitions that shut down the genetic programming required for spermatid function, reprogram (imprint) subsets of genes that will need to be activated at different stages of embryogenesis, and finally condense the entire genome into a genetically inactive, densely packed macrostructure that is not only protected from the majority of environmental influences but is also hydrodynamically optimized for transport into an oocyte (Braun, Nat Genet 28(1):10–12, 2001). The changes in chromatin organization that occur as mammalian spermatocytes differentiate into mature sperm are among the most extreme that have been observed in biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendel G, editor. Experiment in plant hybridization. Brunn: Brunn Natural History Society; 1865.

    Google Scholar 

  2. Haeckel E. Generelle morphologie der organismen. Berlin: Reimer; 1866.

    Book  Google Scholar 

  3. Miescher F. Letter I to Wilhelm His; Tubingen, February 26th, 1869. In: His W, editor. Die Histochemischen und Physiologischen Arbeiten von Friedrich Miescher—Aus dem sissenschaft—lichen Briefwechsel von F. Miescher. Liepzig: F. C. W. Vogel; 1869. p. 33–8.

    Google Scholar 

  4. Miescher F. Uber die chemische Zusammensetzung der Eiter—zellen. Med-Chem Unters. 1871;4:441–60.

    Google Scholar 

  5. Flemming W. Uber das Verhalten des Kern bei der Zellltheilung und uber dei Bedeutung mekrkerniger Zellen. Arch Pathol Anat Physiol. 1879;77:1–29.

    Article  Google Scholar 

  6. Miescher F. Das Protamin—Eine neue organishe Basis aus den Samenssden des Rheinlachses. Ber Dtesch Chem Ges. 1874;7:376.

    Article  Google Scholar 

  7. Kossel A. Ueber die Constitution der einfachsten Eiweissstoffe. Z Pysiologische Chemie. 1898;25:165–89.

    Article  CAS  Google Scholar 

  8. Kossel A, Dakin HD. Uber Salmin und Clupein. Z Pysiologische Chemie. 1904;41:407–15.

    Article  CAS  Google Scholar 

  9. Kossel A, Dakin HD. Weitere Beitrage zum System der einfachsten Eiweisskorper. Z Pysiologische Chemie. 1905;44:342–6.

    Article  CAS  Google Scholar 

  10. Kossel A, Edlbacher F. Uber einige Spaltungsprodukte des Thynnins und Pereins. Z Pysiologische Chemie. 1913;88:186–9.

    Article  Google Scholar 

  11. Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.

    Article  CAS  PubMed  Google Scholar 

  12. Solter D. Differential imprinting and expression of maternal and paternal genomes. Annu Rev Genet. 1988;22:127–46.

    Article  CAS  PubMed  Google Scholar 

  13. Ade H, Zhang X, Cameron S, Costello C, Kirz J, Williams S. Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science. 1992;258(5084):972–5.

    Article  CAS  PubMed  Google Scholar 

  14. Biermann K, Steger K. Epigenetics in male germ cells. J Androl. 2007;28(4):466–480. doi:jandr01.106.002048 [pii]. https://doi.org/10.2164/jandr01.106.002048.

    Article  CAS  PubMed  Google Scholar 

  15. Štiavnická M, García Álvarez O, Nevoral J, Králíčková M, Sutovsky P. Key features of genomic imprinting during mammalian spermatogenesis: perspectives for human assisted reproductive therapy: a review. Anat Physiol. 2016;6(5):236. https://doi.org/10.4172/2161–0940.1000236.

    Article  Google Scholar 

  16. Canovas S, Ross PJ. Epigenetics in preimplantation mammalian development. Theriogenology. 2016;86(1):69–79. https://doi.org/10.1016/j.theriogenology.2016.04.020. S0093–691X(16)30051–6 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinheiro I, Heard E. X chromosome inactivation: new players in the initiation of gene silencing. F1000Research. 2017; 6(F1000 Faculty Rev):344 (doi: 10.12688/f1000research.10707.1)

    Google Scholar 

  18. Heard E, Clerc P, Avner P. X-chromosome inactivation in mammals. Annu Rev Genet. 1997;31:571–610.

    Article  CAS  PubMed  Google Scholar 

  19. Ney PA. Gene expression during terminal erythroid differentiation. Curr Opin Hematol. 2006;13(4):203–8.

    Article  CAS  PubMed  Google Scholar 

  20. Berlowitz L. Chromosomal inactivation and reactivation in mealy bugs. Genetics. 1974;78(1):311–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92. https://doi.org/10.1101/gad.220095.113. gad.220095.113 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Annunziato A. DNA packaging: nucleosomes and chromatin. Nat Educ. 2008;1(1):26.

    Google Scholar 

  23. Hazzouri M, Pivot-Pajot C, Faure A-K, Usson Y, Pelletier R, Sèle B et al. Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone-deacetylases. Eur J Cell Biol 2000;79(12):950–960. doi: 10.1078/0171–9335–00123.

    Google Scholar 

  24. An J, Qin J, Wan Y, Zhang Y, Hu Y, Zhang C, et al. Histone lysine methylation exhibits a distinct distribution during spermatogenesis in pigs. Theriogenology. 2015;84(9):1455–62. https://doi.org/10.1016/j.theriogenology.2015.07.013. S0093–691X(15)00371–4 [pii].

    Article  CAS  PubMed  Google Scholar 

  25. Carrell DT. Epigenetics of the male gamete. Fertil Steril. 2012;97(2):267–74. https://doi.org/10.1016/j.fertnstert.2011.12.036. S0015–0282(11)02920–7 [pii]

    Article  CAS  PubMed  Google Scholar 

  26. Godmann M, Auger V, Ferraroni-Aguiar V, Sauro AD, Sette C, Behr R, et al. Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod. 2007;77(5):754–64. https://doi.org/10.1095/biolreprod.107.062265.

    Article  CAS  PubMed  Google Scholar 

  27. Khalil AM, Boyar FZ, Driscoll DJ. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis. Proc Natl Acad Sci U S A. 2004;101(47):16583–16587. doi:0406325101 [pii]. https://doi.org/10.1073/pnas.0406325101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T. Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem. 2011;44(4):183–90. https://doi.org/10.1267/ahc.11027. AHC11027 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luense LJ, Wang X, Schon SB, Weller AH, Lin Shiao E, Bryant JM, et al. Comprehensive analysis of histone post-translational modifications in mouse and human male germ cells. Epigenetics Chromatin. 2016;9:24. https://doi.org/10.1186/s13072–016–0072–6. 72 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nair M, Nagamori I, Sun P, Mishra DP, Rheaume C, Li B, et al. Nuclear regulator Pyg02 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320(2):446–55. https://doi.org/10.1016/j.ydbi0.2008.05.553. S0012–1606(08)00920–2 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90. doi:524 [pii].

    Article  CAS  PubMed  Google Scholar 

  32. Shirakata Y, Hiradate Y, Inoue H, Sato E, Tanemura K. Histone h4 modification during mouse spermatogenesis. J Reprod Dev. 2014;60(5):383–7. doi:DN/JST.JSTAGE/jrd/2014–018 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, et al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol. 2010;17(6):679–87. https://doi.org/10.1038/nsmb.1821. nsmb.1821 [pii].

    Article  CAS  PubMed  Google Scholar 

  34. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arpanahi A, Brinkworth M, Iles D, Krawetz SA, Paradowska A, Platts AE, et al. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res. 2009;19(8):1338–49. https://doi.org/10.1101/gr.094953.109. gr.094953.109 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balhorn R, Gledhill BL, Wyrobek AJ. Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry. 1977;16(18):4074–80.

    Article  CAS  PubMed  Google Scholar 

  37. Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, et al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol. 2013;20(7):868–75. https://doi.org/10.1038/nsmb.2599. nsmb.2599 [pii].

    Article  CAS  PubMed  Google Scholar 

  38. Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol. 1998;18(6):3350–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804):962–4.

    Article  CAS  PubMed  Google Scholar 

  40. Pittoggi C, Renzi L, Zaccagnini G, Cimini D, Degrassi F, Giordano R, et al. A fraction of mouse sperm chromatin is organized in nucleosomal hypersensitive domains enriched in retroposon DNA. J Cell Sci. 1999;112(20):3537–48.

    CAS  PubMed  Google Scholar 

  41. Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry. 1996;23(4):263–71.

    Article  CAS  PubMed  Google Scholar 

  43. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265(33):20662–6.

    CAS  PubMed  Google Scholar 

  44. Gusse M, Sautière P, Bélaiche D, Martinage A, Roux C, Dadoune JP, et al. Purification and characterization of nuclear basic proteins of human sperm. Biochim Biophys Acta. 1986;884(1):124–34.

    Article  CAS  PubMed  Google Scholar 

  45. Tanphaichitr N, Sobhon P, Taluppeth N, Chalermisarachai P. Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man. Exp Cell Res. 1978;117(2):347–56.

    Article  CAS  PubMed  Google Scholar 

  46. Kimmins S, Sassone-Corsi P. Chromatin remodelling and epigenetic features of germ cells. Nature. 2005;434(7033):583–9.

    Article  CAS  PubMed  Google Scholar 

  47. Zalenskaya IA, Zalensky AO. Non-random positioning of chromosomes in human sperm nuclei. Chromosom Res. 2004;12(2):163–73.

    Article  CAS  Google Scholar 

  48. Zalenskaya IA, Bradbury EM, Zalensky AO. Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun. 2000;279(1):213–8. https://doi.org/10.1006/bbrc.2000.3917. S0006–291X(00)93917–2 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6. https://doi.org/10.1093/molehr/gap080. gap080 [pii].

    Article  CAS  PubMed  Google Scholar 

  50. Banerjee S, Smallwood A. Chromatin modification of imprinted H19 gene in mammalian spermatozoa. Mol Reprod Dev. 1998;50(4):474–84.

    Article  CAS  PubMed  Google Scholar 

  51. Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballesca JL, et al. Genomic and proteomic dissection and characterization of the human sperm chromatin. Mol Hum Reprod. 2014;20(11):1041–53. https://doi.org/10.1093/molehr/gau079. gau079 [pii].

    Article  CAS  PubMed  Google Scholar 

  52. Sillaste G, Kaplinski L, Meier R, Jaakma U, Eriste E, Salumets A. A novel hypothesis for histone-to-protamine transition in Bos taurus spermatozoa. Reproduction. 2017;153(3):241–51. https://doi.org/10.1530/REP-16–0441. REP-16–0441 [pii].

    Article  CAS  PubMed  Google Scholar 

  53. Hammoud SS, Purwar J, Pflueger C, Cairns BR, Carrell DT. Alterations in sperm DNA methylation patterns at imprinted loci in two classes of infertility. Fertil Steril. 2010;94(5):1728–33. https://doi.org/10.1016/j.fertnstert.2009.09.010. S0015–0282(09)03689–9 [pii]

    Article  CAS  PubMed  Google Scholar 

  54. Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet. 2014;10(5):e1004317. https://doi.org/10.1371/journal.pgen.1004317. PGENETICS-D-13–01408 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Vavouri T, Lehner B. Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet. 2011;7(4):e1002036. https://doi.org/10.1371/journal.pgen.1002036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47. https://doi.org/10.1093/molehr/gap090. gap090 [pii].

    Article  CAS  PubMed  Google Scholar 

  57. Steger K, Klonisch T, Gavenis K, Drabent B, Doenecke D, Bergmann M. Expression of mRNA and protein of nucleoproteins during human spermiogenesis. Mol Hum Reprod. 1998;4(10):939–45.

    Article  CAS  PubMed  Google Scholar 

  58. Singh J, Rao MR. Interaction of rat testis protein, TP, with nucleic acids in vitro. Fluorescence quenching, UV absorption, and thermal denaturation studies. J Biol Chem. 1987;262(2):734–40.

    CAS  PubMed  Google Scholar 

  59. Akama K, Sato H, Oguma K, Nakano M. Isolation of intact transition protein 2 with three zinc finger motifs from boar late spermatid nuclei. Biochem Mol Biol Int. 1997;42(5):865–72.

    CAS  PubMed  Google Scholar 

  60. Kundu TK, Rao MR. DNA condensation by the rat spermatidal protein TP2 shows GC-rich sequence preference and is zinc dependent. Biochemistry. 1995;34(15):5143–50.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta N, Madapura MP, Bhat UA, Rao MRS. Mapping of post-translational modifications of transition proteins, TP1 and TP2, and identification of protein arginine methyltransferase 4 and lysine methyltransferase 7 as methyltransferase for TP2. J Biol Chem. 2015;290(19):12101–22. https://doi.org/10.1074/jbc.M114.620443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ullas KS, Rao MR. Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem. 2003;278(52):52673–80. https://doi.org/10.1074/jbc.M308365200. M308365200 [pii]

    Article  CAS  PubMed  Google Scholar 

  63. Meetei AR, Ullas KS, Vasupradha V, Rao MR. Involvement of protein kinase A in the phosphorylation of spermatidal protein TP2 and its effect on DNA condensation. Biochemistry. 2002;41(1):185–95. doi:bi0117652 [pii].

    Article  CAS  PubMed  Google Scholar 

  64. Pradeepa MM, Nikhil G, Hari Kishore A, Bharath GN, Kundu TK, Rao MR. Acetylation of transition protein 2 (TP2) by KAT3B (p300) alters its DNA condensation property and interaction with putative histone chaperone NPM3. J Biol Chem. 2009;284(43):29956–67. https://doi.org/10.1074/jbc.M109.052043. M109.052043 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, et al. Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A. 2000;97(9):4683–8. doi:97/9/4683 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, et al. Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol. 2001;21(21):7243–55. https://doi.org/10.1128/MCB.21.21.7243-7255.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Caron N, Veilleux S, Boissonneault G. Stimulation of DNA repair by the spermatidal TP1 protein. Mol Reprod Dev. 2001;58(4):437–43.

    Article  CAS  PubMed  Google Scholar 

  68. Kierszenbaum AL. Transition nuclear proteins during spermiogenesis: unrepaired DNA breaks not allowed. Mol Reprod Dev. 2001;58(4):357–8. https://doi.org/10.1002/1098-2795(20010401)58:4<357::AID-MRD1>3.0.CO;2-T. [pii] 10.1002/1098–2795(20010401)58:4<357::AID-MRD1>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  69. Unni E, Meistrich ML. Purification and characterization of the rat spermatid basic nuclear protein TP4. J Biol Chem. 1992;267(35):25359–63.

    CAS  PubMed  Google Scholar 

  70. Catena R, Escoffier E, Caron C, Khochbin S, Martianov I, Davidson I. HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids. Biol Reprod. 2009;80(2):358–66. https://doi.org/10.1095/biolreprod.108.070243. biolreprod.108.070243 [pii].

    Article  CAS  PubMed  Google Scholar 

  71. Rouhiainen A, Zhao X, Vanttola P, Qian K, Kulesskiy E, Kuja-Panula J, et al. HMGB4 is expressed by neuronal cells and affects the expression of genes involved in neural differentiation. Sci Rep. 2016;6:32960. https://doi.org/10.1038/srep32960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petit FG, Kervarrec C, Jamin SP, Smagulova F, Hao C, Becker E, et al. Combining RNA and protein profiling data with network interactions identifies genes associated with spermatogenesis in mouse and human. Biol Reprod. 2015;92(3):71. https://doi.org/10.1095/biolreprod.114.126250. biolreprod.114.126250 [pii].

    Article  PubMed  CAS  Google Scholar 

  73. Balhorn R, Weston S, Thomas C, Wyrobek AJ. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res. 1984;150(2):298–308.

    Article  CAS  PubMed  Google Scholar 

  74. Hecht NB. Mammalian protamines and their expression. In: Hnilica LS, Stein GS, Stein JL, editors. Histones and other basic nuclear proteins, CRC series in the biochemistry and molecular biology of the cell nucleus. Boca Raton: CRC Press; 1989. p. 347–73.

    Google Scholar 

  75. Kleene KC, Distel RJ, Hecht NB. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol. 1984;105(1):71–9. doi:0012–1606(84)90262–8 [pii].

    Article  CAS  PubMed  Google Scholar 

  76. Yelick PC, Kwon YK, Flynn JF, Borzorgzadeh A, Kleene KC, Hecht NB. Mouse transition protein 1 is translationally regulated during the postmeiotic stages of spermatogenesis. Mol Reprod Dev. 1989;1(3):193–200.

    Article  CAS  PubMed  Google Scholar 

  77. Kleene KC, Flynn J. Translation of mouse testis poly (A)+ mRNAs for testis-specific protein, protamine 1, and the precursor for protamine 2. Dev Biol. 1987;123(1):125–35.

    Article  CAS  PubMed  Google Scholar 

  78. Lee K, Haugen HS, Clegg CH, Braun RE. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice. Proc Natl Acad Sci U S A. 1995;92(26):12451–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.

    Article  CAS  PubMed  Google Scholar 

  80. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Balhorn R. Mammalian protamines: structure and molecular interactions. In: Adolph KW, editor. Molecular biology of chromosome function. New York: Springer-Verlag; 1989. p. 366–95.

    Chapter  Google Scholar 

  82. Dixon GH, Candido EPM, Honda BM, Louie AJ, Macleod AR, Sung MT. The biological roles of post-synthetic modifications of basic nuclear proteins. Ciba foundation symposium 28—The structure and function of chromatin. John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9780470720103.ch2.

    Google Scholar 

  83. Ingles CJ, Dixon GH. Phosphorylation of protamine during spermatogenesis in trout testis. Proc Natl Acad Sci U S A. 1967;58(3):1011–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol. 1991;40:25–94.

    Article  CAS  PubMed  Google Scholar 

  85. Balhorn R, Corzett M, Mazrimas J, Watkins B. Identification of bull protamine disulfides. Biochemistry. 1991;30(1):175–81.

    Article  CAS  PubMed  Google Scholar 

  86. Vilfan ID, Conwell CC, Hud NV. Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem. 2004;279(19):20088–95. https://doi.org/10.1074/jbc.M312777200. M312777200 [pii].

    Article  CAS  PubMed  Google Scholar 

  87. Retief JD, Winkfein RJ, Dixon GH. Evolution of the monotremes. The sequences of the protamine P1 genes of platypus and echidna. Eur J Biochem. 1993;218(2):457–61.

    Article  CAS  PubMed  Google Scholar 

  88. Retief JD, Krajewski C, Westerman M, Winkfein RJ, Dixon GH. Molecular phylogeny and evolution of marsupial protamine P1 genes. Proc Biol Sci. 1995;259(1354):7–14.

    Article  CAS  PubMed  Google Scholar 

  89. Fifis T, Cooper DW, Hill RJ. Characterization of the protamines of the tammar wallaby (Macropus eugenii). Comp Biochem Physiol. 1990;95B:571–5.

    CAS  Google Scholar 

  90. Retief JD, Rees JS, Westerman M, Dixon GH. Convergent evolution of cysteine residues in sperm protamines of one genus of marsupials, the Planigales. Mol Biol Evol. 1995;12(4):708–12.

    CAS  PubMed  Google Scholar 

  91. Winkfein RJ, Nishikawa S, Connor W, Dixon GH. Characterization of a marsupial sperm protamine gene and its transcripts from the North American opossum (Didelphis marsupialis). Eur J Biochem. 1993;215(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  92. Retief JD, Krajewski C, Westerman M, Dixon GH. The evolution of protamine P1 genes in dasyurid marsupials. J Mol Evol. 1995;41(5):549–55.

    Article  CAS  PubMed  Google Scholar 

  93. Yelick PC, Balhorn R, Johnson PA, Corzett M, Mazrimas JA, Kleene KC, et al. Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol. 1987;7(6):2173–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Carré-Eusèbe D, Lederer F, Lê KH, Elsevier SM. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates. Biochem J. 1991;277(Pt 1):39–45.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chauviere M, Martinage A, Debarle M, Sautiere P, Chevaillier P. Molecular characterization of six intermediate proteins in the processing of mouse protamine P2 precursor. Eur J Biochem. 1992;204(2):759–65.

    Article  CAS  PubMed  Google Scholar 

  96. Elsevier SM, Noiran J, Carre-Eusebe D. Processing of the precursor of protamine P2 in mouse. Identification of intermediates by their insolubility in the presence of sodium dodecyl sulfate. Eur J Biochem. 1991;196(1):167–75.

    Article  CAS  PubMed  Google Scholar 

  97. Martinage A, Arkhis A, Alimi E, Sautiere P, Chevaillier P. Molecular characterization of nuclear basic protein HPI1, a putative precursor of human sperm protamines HP2 and HP3. Eur J Biochem. 1990;191(2):449–51.

    Article  CAS  PubMed  Google Scholar 

  98. Green GR, Balhorn R, Poccia DL, Hecht NB. Synthesis and processing of mammalian protamines and transition proteins. Mol Reprod Dev. 1994;37(3):255–63.

    Article  CAS  PubMed  Google Scholar 

  99. Brunner AM, Nanni P, Mansuy IM. Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin. 2014;7(1):2. https://doi.org/10.1186/1756–8935–7-2. 1756–8935–7-2 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bal W, Dyba M, Szewczuk Z, Jezowska-Bojczuk M, Lukszo J, Ramakrishna G, et al. Differential zinc and DNA binding by partial peptides of human protamine HP2. Mol Cell Biochem. 2001;222(1–2):97–106.

    Article  CAS  PubMed  Google Scholar 

  101. Bench G, Corzett MH, Kramer CE, Grant PG, Balhorn R. Zinc is sufficiently abundant within mammalian sperm nuclei to bind stoichiometrically with protamine 2. Mol Reprod Dev. 2000;56(4):512–9.

    Article  CAS  PubMed  Google Scholar 

  102. Bianchi F, Rousseaux-Prevost R, Sautiere P, Rousseaux J. P2 protamines from human sperm are zinc -finger proteins with one CYS2/HIS2 motif. Biochem Biophys Res Commun. 1992;182(2):540–7.

    Article  CAS  PubMed  Google Scholar 

  103. Kvist U, Björndahl L. Zinc preserves an inherent capacity for human sperm 104 decondensation. Acta Physiol Scand. 1985;124(2):195–200.

    Article  CAS  PubMed  Google Scholar 

  104. Kvist U, Björndahl L, Kjellberg S. Sperm nuclear zinc, chromatin stability, and male fertility. Scanning Microsc. 1987;1(3):1241–7.

    CAS  PubMed  Google Scholar 

  105. Gatewood JM, Schroth GP, Schmid CW, Bradbury EM. Zinc-induced secondary structure transitions in human sperm protamines. J Biol Chem. 1990;265(33):20667–72.

    CAS  PubMed  Google Scholar 

  106. Dolan CE. Structural and functional studies of the protamine 2-zinc complex from Syrian gold hamster (Mesocricetus auratus) spermatids and sperm. Davis: University of California; 2004.

    Book  Google Scholar 

  107. Bjorndahl L, Kvist U. Human sperm chromatin stabilization: a proposed model including zinc bridges. Mol Hum Reprod. 2010;16(1):23–9.

    Article  PubMed  CAS  Google Scholar 

  108. Perreault SD, Barbee RR, Elstein KH, Zucker RM, Keefer CL. Interspecies differences in the stability of mammalian sperm nuclei assessed in vivo by sperm microinjection and in vitro by flow cytometry. Biol Reprod. 1988;39(1):157–67.

    Article  CAS  PubMed  Google Scholar 

  109. Auld DS. Zinc coordination sphere in biochemical zinc sites. Biometals. 2001;14(3–4):271–313.

    Article  CAS  PubMed  Google Scholar 

  110. Heinz U, Kiefer M, Tholey A, Adolph H-W. On the competition for available zinc. J Biol Chem. 2005;280(5):3197–207. https://doi.org/10.1074/jbc.M409425200.

    Article  CAS  PubMed  Google Scholar 

  111. Salgado EN, Lewis RA, Faraone-Mennella J, Tezcan FA. Metal-mediated self-assembly of protein superstructures: influence of secondary interactions on protein oligomerization and aggregation. J Am Chem Soc. 2008;130(19):6082–4. https://doi.org/10.1021/ja8012177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Balhorn R, Cosman M, Thornton K, Krishnan VV, Corzett M, Bench G, et al. Protamine mediated condensation of DNA in mammalian sperm. In: Gagnon C, editor. The male gamete: from basic knowledge to clinical applications: proceedings of the 8th international symposium of spermatology. Vienna: Cache River Press; 1999. p. 55–70.

    Google Scholar 

  113. Corzett M, Kramer C, Blacher R, Mazrimas J, Balhorn R. Analysis of hamster protamines: primary sequence and species distribution. Mol Reprod Dev. 1999;54:273–82.

    Article  CAS  PubMed  Google Scholar 

  114. Hud NV, Milanovich FP, Balhorn R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry. 1994;33(24):7528–35.

    Article  CAS  PubMed  Google Scholar 

  115. Bianchi F, Rousseaux-Prevost R, Bailly C, Rousseaux J. Interaction of human P1 and P2 protamines with DNA. Biochem Biophys Res Commun. 1994;201(3):1197–204.

    Article  CAS  PubMed  Google Scholar 

  116. Brewer LR, Corzett M, Balhorn R. Protamine-induced condensation and decondensation of the same DNA molecule. Science. 1999;286(5437):120–3.

    Article  CAS  PubMed  Google Scholar 

  117. Feughelman M, Langridge R, Seeds WE, Stokes AR, Wilson HR, Hooper CW, et al. Molecular structure of deoxyribonucleic acid and nucleoprotein. Nature. 1955;175:834–8.

    Article  CAS  PubMed  Google Scholar 

  118. Prieto MC, Maki AH, Balhorn R. Analysis of DNA-protamine interactions by optical detection of magnetic resonance. Biochemistry. 1997;36(39):11944–51.

    Article  CAS  PubMed  Google Scholar 

  119. Wilkins MFH. Physical studies of the molecular structure of deoxyribonucleic acid and nucleoprotein. Cold Spring Harb Symp Quant Biol. 1956;21:75–90.

    Article  CAS  PubMed  Google Scholar 

  120. Foresta C, Zorzi M, Rossato M, Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl. 1992;15(4):330–7.

    Article  CAS  PubMed  Google Scholar 

  121. Sartori Blanc N, Senn A, Leforestier A, Livolant F, Dubochet J. DNA in human and stallion spermatozoa forms local hexagonal packing with twist and many defects. J Struct Biol. 2001;134(1):76–81. https://doi.org/10.1006/jsbi.2001.4365. S1047–8477(01)94365–5 [pii]

    Article  CAS  PubMed  Google Scholar 

  122. Hud NV, Vilfan ID. Toroidal DNA condensates: unraveling the fine structure and the role of nucleation in determining size. Annu Rev Biophys Biomol Struct. 2005;34:295–318.

    Article  CAS  PubMed  Google Scholar 

  123. Horowitz RA, Agard DA, Sedat JW, Woodcock CL. The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol. 1994;125(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  124. Allen MJ, Lee C, Lee JD 4th, Pogany GC, Balooch M, Siekhaus WJ, et al. Atomic force microscopy of mammalian sperm chromatin. Chromosoma. 1993;102(9):623–30.

    Article  CAS  PubMed  Google Scholar 

  125. Evenson DP, Witkin SS, de Harven E, Bendich A. Ultrastructure of partially decondensed human spermatozoal chromatin. J Ultrastruct Res. 1978;63(2):178–87.

    Article  CAS  PubMed  Google Scholar 

  126. Koehler JK. Fine structure observations in frozen-etched bovine spermatozoa. J Ultrastruct Res. 1966;16(3):359–75.

    Article  CAS  PubMed  Google Scholar 

  127. Koehler JK. A freeze-etching study of rabbit spermatozoa with particular reference to head structures. J Ultrastruct Res. 1970;33(5):598–614.

    Article  CAS  PubMed  Google Scholar 

  128. Koehler JK, Wurschmidt U, Larsen MP. Nuclear and chromatin structure in rat spermatozoa. Gamate Res. 1983;8:357–77.

    Article  CAS  Google Scholar 

  129. Sobhon P, Chutatape C, Chalermisarachai P, Vongpayabal P, Tanphaichitr N. Transmission and scanning electron microscopic studies of the human sperm chromatin decondensed by micrococcal nuclease and salt. J Exp Zool. 1982;221(1):61–79.

    Article  CAS  PubMed  Google Scholar 

  130. Wagner TE, Yun JS. Fine structure of human sperm chromatin. Arch Androl. 1979;2(4):291–4.

    Article  CAS  PubMed  Google Scholar 

  131. Bera A, Perkins EM, Zhu J, Zhu H, Desai P. DNA binding and condensation properties of the herpes simplex virus type 1 triplex protein VP19C. PLoS One. 2014;9(8):e104640. https://doi.org/10.1371/journal.pone.0104640. PONE-D-14–16399 [pii].

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Furlong D, Swift H, Roizman B. Arrangement of herpesvirus deoxyribonucleic acid in the core. J Virol. 1972;10(5):1071–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Allen MJ, Bradbury EM, Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997;25(11):2221–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bloomfield VA. Condensation of DNA by multivalent cations: considerations on mechanism. Biopolymers. 1991;31(13):1471–81.

    Article  CAS  PubMed  Google Scholar 

  135. Marquet R, Wyart A, Houssier C. Influence of DNA length on spermine-induced condensation. Importance of the bending and stiffening of DNA. Biochim Biophys Acta. 1987;909(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  136. Hud NV, Downing KH. Cryoelectron microscopy of lambda phage DNA condensates in vitreous ice: the fine structure of DNA toroids. Proc Natl Acad Sci U S A. 2001;98(26):14925–30. https://doi.org/10.1073/pnas.261560398. 261560398 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Koehler JK. Human sperm head ultrastructure: a freeze-etching study. J Ultrastruct Res. 1972;39(5):520–39.

    Article  CAS  PubMed  Google Scholar 

  138. Livolant F. Cholesteric organization of DNA in the stallion sperm head. Tissue Cell. 1984;16(4):535–55.

    Article  CAS  PubMed  Google Scholar 

  139. Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2(4):292–301.

    Article  CAS  PubMed  Google Scholar 

  140. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet. 1988;80(3):224–34.

    Article  CAS  PubMed  Google Scholar 

  141. Savage JR. Interchange and intra-nuclear architecture. Environ Mol Mutagen. 1993;22(4):234–44.

    Article  CAS  PubMed  Google Scholar 

  142. Schardin M, Cremer T, Hager HD, Lang M. Specific staining of human chromosomes in Chinese hamster x man hybrid cell lines demonstrates interphase chromosome territories. Hum Genet. 1985;71(4):281–7.

    Article  CAS  PubMed  Google Scholar 

  143. Weierich C, Brero A, Stein S, von Hase J, Cremer C, Cremer T, et al. Three-dimensional arrangements of centromeres and telomeres in nuclei of human and murine lymphocytes. Chromosom Res. 2003;11(5):485–502.

    Article  CAS  Google Scholar 

  144. Manuelidis L. Individual interphase chromosome domains revealed by in situ hybridization. Hum Genet. 1985;71(4):288–93.

    Article  CAS  PubMed  Google Scholar 

  145. Manvelyan M, Hunstig F, Bhatt S, Mrasek K, Pellestor F, Weise A, et al. Chromosome distribution in human sperm—a 3D multicolor banding-study. Mol Cytogenet. 2008;1:25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Mudrak O, Tomilin N, Zalensky A. Chromosome architecture in the decondensing human sperm nucleus. J Cell Sci. 2005;118(Pt 19):4541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zalensky A, Zalenskaya I. Organization of chromosomes in spermatozoa: an additional layer of epigenetic information? Biochem Soc Trans. 2007;35(Pt 3):609–11.

    Article  CAS  PubMed  Google Scholar 

  148. Chen JL, Guo SH, Gao FH. Nuclear matrix in developing rat spermatogenic cells. Mol Reprod Dev. 2001;59(3):314–21.

    Article  CAS  PubMed  Google Scholar 

  149. Santi S, Rubbini S, Cinti C, Squarzoni S, Matteucci A, Caramelli E, et al. Ultrastructural organization of the sperm nuclear matrix. Ital J Anat Embryol. 1995;100(Suppl 1):39–46.

    PubMed  Google Scholar 

  150. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.

    Article  CAS  PubMed  Google Scholar 

  151. Yaron Y, Kramer JA, Gyi K, Ebrahim SA, Evans MI, Johnson MP, et al. Centromere sequences localize to the nuclear halo of human spermatozoa. Int J Androl. 1998;21(1):13–8.

    Article  CAS  PubMed  Google Scholar 

  152. Heng HH, Goetze S, Ye CJ, Liu G, Stevens JB, Bremer SW, et al. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J Cell Sci. 2004;117(Pt 7):999–1008.

    Article  CAS  PubMed  Google Scholar 

  153. Heng HH, Krawetz SA, Lu W, Bremer S, Liu G, Ye CJ. Re-defining the chromatin loop domain. Cytogenet Cell Genet. 2001;93(3–4):155–61.

    Article  CAS  PubMed  Google Scholar 

  154. Shaman JA, Yamauchi Y, Ward WS. Function of the sperm nuclear matrix. Arch Androl. 2007;53(3):135–40.

    Article  CAS  PubMed  Google Scholar 

  155. Shaman JA, Yamauchi Y, Ward WS. The sperm nuclear matrix is required for paternal DNA replication. J Cell Biochem. 2007;102(3):680–8.

    Article  CAS  PubMed  Google Scholar 

  156. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev. 2005;122(9):1008–1022. doi:S0925–4773(05)00062–6 [pii]. https://doi.org/10.1016/j.mod.2005.04.009.

    Article  PubMed  CAS  Google Scholar 

  157. Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, et al. Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science. 2003;300(5619):633–6. https://doi.org/10.1126/science.1081813. 300/5619/633 [pii].

    Article  CAS  PubMed  Google Scholar 

  158. Dilworth SM, Black SJ, Laskey RA. Two complexes that contain histones are required for nucleosome assembly in vitro: role of nucleoplasmin and N1 in Xenopus egg extracts. Cell. 1987;51(6):1009–18. doi:0092–8674(87)90587–3 [pii].

    Article  CAS  PubMed  Google Scholar 

  159. Emelyanov AV, Rabbani J, Mehta M, Vershilova E, Keogh MC, Fyodorov DV. Drosophila TAP/p32 is a core histone chaperone that cooperates with NAP-1, NLP, and nucleophosmin in sperm chromatin remodeling during fertilization. Genes Dev. 2014;28(18):2027–40. https://doi.org/10.1101/gad.248583.114. 28/18/2027 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Iwata K, Hozumi K, Iihara A, Nomizu M, Sakairi N, Nishi N. Mechanism of salmon sperm decondensation by nucleoplasmin. Int J Biol Macromol. 1999;26(2–3):95–101. doi:S0141–8130(99)00071–9 [pii].

    Article  CAS  PubMed  Google Scholar 

  161. Laskey RA, Mills AD, Philpott A, Leno GH, Dilworth SM, Dingwall C. The role of nucleoplasmin in chromatin assembly and disassembly. Philos Trans R Soc Lond Ser B Biol Sci. 1993;339(1289):263–269.; discussion 8–9. https://doi.org/10.1098/rstb.1993.0024.

    Article  CAS  Google Scholar 

  162. McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125(5):625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Okuwaki M, Sumi A, Hisaoka M, Saotome-Nakamura A, Akashi S, Nishimura Y, et al. Function of homo- and hetero-oligomers of human nucleoplasmin/nucleophosmin family proteins NPM1, NPM2 and NPM3 during sperm chromatin remodeling. Nucleic Acids Res. 2012;40(11):4861–78. https://doi.org/10.1093/nar/gks162. gks162 [pii].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Prieto C, Saperas N, Arnan C, Hills MH, Wang X, Chiva M, et al. Nucleoplasmin interaction with protamines. Involvement of the polyglutamic tract. Biochemistry. 2002;41(24):7802–10.

    Article  CAS  PubMed  Google Scholar 

  165. Ruiz-Lara SA, Cornudella L, Rodriguez-Campos A. Dissociation of protamine-DNA complexes by Xenopus nucleoplasmin and minichromosome assembly in vitro. Eur J Biochem. 1996;240(1):186–94.

    Article  CAS  PubMed  Google Scholar 

  166. Frehlick LJ, Eirin-Lopez JM, Jeffery ED, Hunt DF, Ausio J. The characterization of amphibian nucleoplasmins yields new insight into their role in sperm chromatin remodeling. BMC Genomics. 2006;7:99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Philpott A, Leno GH. Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell. 1992;69(5):759–67.

    Article  CAS  PubMed  Google Scholar 

  168. Katagiri C, Ohsumi K. Remodeling of sperm chromatin induced in egg extracts of amphibians. Int J Dev Biol. 1994;38(2):209–16.

    CAS  PubMed  Google Scholar 

  169. Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum Mol Genet. 2008;17(13):1922–37.

    Article  CAS  PubMed  Google Scholar 

  170. Generoso WM, Cain KT, Krishna M, Huff SW. Genetic lesions induced by chemicals in spermatozoa and spermatids of mice are repaired in the egg. Proc Natl Acad Sci U S A. 1979;76(1):435–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Matsuda Y, Seki N, Utsugi-Takeuchi T, Tobari I. Changes in X-ray sensitivity of mouse eggs from fertilization to the early pronuclear stage, and their repair capacity. Int J Radiat Biol. 1989;55(2):233–56.

    Article  CAS  PubMed  Google Scholar 

  172. Matsuda Y, Yamada T, Tobari I. Studies on chromosome aberrations in the eggs of mice fertilized in vitro after irradiation. I. Chromosome aberrations induced in sperm after X-irradiation. Mutat Res. 1985;148(1–2):113–7.

    Article  CAS  PubMed  Google Scholar 

  173. Blanchard Y, Lescoat D, Le Lannou D. Anomalous distribution of nuclear basic proteins in round-headed human spermatozoa. Andrologia. 1990;22(6):549–55.

    Article  CAS  PubMed  Google Scholar 

  174. de Yebra L, Ballesca JL, Vanrell JA, Bassas L, Oliva R. Complete selective absence of protamine-P2 in humans. J Biol Chem. 1993;268(14):10553–7.

    PubMed  Google Scholar 

  175. Hofmann N, Hilscher B. Use of aniline blue to assess chromatin condensation in morphologically normal spermatozoa in normal and infertile men. Hum Reprod. 1991;6(7):979–82.

    Article  CAS  PubMed  Google Scholar 

  176. Terquem A, Dadoune J. Aniline blue staining of human spermatozoa chromatin: evaluation of nuclear maturation. The sperm cell. The Hague: Martinus Nijhoff Publishers; 1983.

    Google Scholar 

  177. van Roijen HJ, Ooms MP, Spaargaren MC, Baarends WM, Weber RF, Grootegoed JA, et al. Immunoexpression of testis-specific histone 2B in human spermatozoa and testis tissue. Hum Reprod. 1998;13(6):1559–66.

    Article  PubMed  Google Scholar 

  178. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  CAS  Google Scholar 

  179. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    Article  CAS  PubMed  Google Scholar 

  180. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  181. Belokopytova IA, Kostyleva EI, Tomilin AN, Vorobev VI. Human male infertility may be due to a decrease of the protamine-P2 content in sperm chromatin. Mol Reprod Dev. 1993;34(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  182. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3):313–27.

    Article  CAS  PubMed  Google Scholar 

  183. Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.

    CAS  PubMed  Google Scholar 

  184. Chevaillier P, Mauro N, Feneux D, Jouannet P, David G. Anomalous protein complement of sperm nuclei in some infertile men. Lancet. 1987;2(8562):806–7.

    Article  CAS  PubMed  Google Scholar 

  185. Mengual L, Ballesca JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl. 2003;24(3):438–47.

    Article  PubMed  Google Scholar 

  186. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    Article  CAS  PubMed  Google Scholar 

  187. Steger K. Haploid spermatids exhibit translationally repressed mRNAs. Anat Embryol (Berl). 2001;203(5):323–34.

    Article  CAS  Google Scholar 

  188. Steger K, Fink L, Failing K, Bohle RM, Kliesch S, Weidner W, et al. Decreased protamine-1 transcript levels in testes from infertile men. Mol Hum Reprod. 2003;9(6):331–6.

    Article  CAS  PubMed  Google Scholar 

  189. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, et al. Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet. 2001;28(1):82–6. https://doi.org/10.1038/88313. 88313 [pii].

    CAS  PubMed  Google Scholar 

  190. Torregrosa N, Dominguez-Fandos D, Camejo MI, Shirley CR, Meistrich ML, Ballesca JL, et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21(8):2084–9.

    Article  CAS  PubMed  Google Scholar 

  191. Aoki VW, Christensen GL, Atkins JF, Carrell DT. Identification of novel polymorphisms in the nuclear protein genes and their relationship with human sperm protamine deficiency and severe male infertility. Fertil Steril. 2006;86(5):1416–22.

    Article  CAS  PubMed  Google Scholar 

  192. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  193. Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006;86(5):1408–15.

    Article  CAS  PubMed  Google Scholar 

  194. Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–7.

    Article  CAS  PubMed  Google Scholar 

  195. Depa-Martynow M, Kempisty B, Lianeri M, Jagodzinski PP, Jedrzejczak P. Association between fertilin beta, protamines 1 and 2 and spermatid-specific linker histone H1-like protein mRNA levels, fertilization ability of human spermatozoa, and quality of preimplantation embryos. Folia Histochem Cytobiol. 2007;45(Suppl 1):S79–85.

    PubMed  Google Scholar 

  196. de Mateo S, Ramos L, de Boer P, Meistrich M, Oliva R. Protamine 2 precursors and processing. Protein Pept Lett. 2011;18(8):778–85. doi:BSP/ PPL/ E pub/0319 [pii].

    Article  PubMed  Google Scholar 

  197. de Yebra L, Ballesca JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.

    Article  PubMed  Google Scholar 

  198. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21(5):739–46.

    CAS  PubMed  Google Scholar 

  199. Bedford JM, Calvin HI. The occurrence and possible functional significance of -S-S- crosslinks in sperm heads, with particular reference to eutherian mammals. J Exp Zool. 1974;188(2):137–55.

    Article  CAS  PubMed  Google Scholar 

  200. Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971;13(Suppl 13):65–75.

    Google Scholar 

  201. Calvin HI, Yu CC, Bedford JM. Effects of epididymal maturation, zinc (II) and copper (II) on the reactive sulfhydryl content of structural elements in rat spermatozoa. Exp Cell Res. 1973;81(2):333–41.

    Article  CAS  PubMed  Google Scholar 

  202. Saowaros W, Panyim S. The formation of disulfide bonds in human protamines during sperm maturation. Experientia. 1979;35(2):191–2.

    Article  CAS  PubMed  Google Scholar 

  203. Sega GA, Generoso EE. Measurement of DNA breakage in spermiogenic germ-cell stages of mice exposed to ethylene oxide, using an alkaline elution procedure. Mutat Res. 1988;197(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  204. Sega GA, Owens JG. Methylation of DNA and protamine by methyl methanesulfonate in the germ cells of male mice. Mutat Res. 1983;111(2):227–44.

    Article  CAS  PubMed  Google Scholar 

  205. Sega GA, Owens JG. Binding of ethylene oxide in spermiogenic germ cell stages of the mouse after low-level inhalation exposure. Environ Mol Mutagen. 1987;10(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  206. Bray TM, Bettger WJ. The physiological role of zinc as an antioxidant. Free Radic Biol Med. 1990;8(3):281–91.

    Article  CAS  PubMed  Google Scholar 

  207. Maret W. Metallothionein/disulfide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int. 1995;27(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  208. Hernandez-Ochoa I, Sanchez-Gutierrez M, Solis-Heredia MJ, Quintanilla-Vega B. Spermatozoa nucleus takes up lead during the epididymal maturation altering chromatin condensation. Reprod Toxicol. 2006;21(2):171–8.

    Article  CAS  PubMed  Google Scholar 

  209. Johansson L, Pellicciari CE. Lead-induced changes in the stabilization of the mouse sperm chromatin. Toxicology. 1988;51(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  210. Quintanilla-Vega B, Hoover DJ, Bal W, Silbergeld EK, Waalkes MP, Anderson LD. Lead interaction with human protamine (HP2) as a mechanism of male reproductive toxicity. Chem Res Toxicol. 2000;13(7):594–600. doi:tx000017v [pii].

    Article  CAS  PubMed  Google Scholar 

  211. Laprise SL. Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol Reprod Dev. 2009;76(11):1006–18. https://doi.org/10.1002/mrd.21058.

    Article  CAS  PubMed  Google Scholar 

  212. Marques PI, Fernandes S, Carvalho F, Barros A, Sousa M, Marques CJ. DNA methylation imprinting errors in spermatogenic cells from maturation arrest azoospermic patients. Andrology. 2017;5(3):451–9. https://doi.org/10.1111/andr.12329.

    Article  CAS  PubMed  Google Scholar 

  213. Miller D, Brinkworth M, Iles D. Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction. 2010;139(2):287–301. https://doi.org/10.1530/REP-09–0281. REP-09–0281 [pii].

    Article  CAS  PubMed  Google Scholar 

  214. Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017;63(2):69–76. https://doi.org/10.1080/19396368.2016.1274791.

    Article  PubMed  Google Scholar 

  215. Ou HD, Phan S, Deerinck TJ, Thor A, Ellisman MH, O’Shea CC. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and miotic cells.Science 2017; 357(6349): 370–383. pii: eaag0025. https://doi.org/10.1126/science.aag0025

Download references

Acknowledgments

I would like to thank all the amazing students, postdocs, and collaborators whose curiosity and creativity have led to the discoveries described in this overview. I also thank Monique Cosman Balhorn for her invaluable contribution to, and constructive critique of, this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rod Balhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balhorn, R. (2018). Sperm Chromatin: An Overview. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics