Skip to main content

Auditory Cortex Circuits

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 65))

Abstract

The auditory cortex (ACX) is the site of transformation from an acoustic analysis of the auditory scene to its perceptual representation. The circuits intrinsic to the ACX are crucial for creating auditory objects and the auditory processing related to higher cognitive information. Considerable progress has been made in the last decades to unravel the complexity of ACX. This chapter includes a description of the various cell types within the layers of ACX and a discussion of the anatomical and functional dissection of auditory cortical microcircuits in vitro and in vivo. Finally, those aspects of the cortex are considered with respect to the functional maps in ACX and auditory processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agmon, A., & Connors, B. W. (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. The Journal of Neuroscience, 12(1), 319–329.

    CAS  PubMed  Google Scholar 

  • Andjelic, S., Gallopin, T., Cauli, B., Hill, E. L., Roux, L., Badr, S., et al. (2009). Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons. Journal of Neurophysiology, 101(2), 641–654.

    Article  CAS  PubMed  Google Scholar 

  • Atencio, C. A., & Schreiner, C. E. (2008). Spectrotemporal processing differences between auditory cortical fast-spiking and regular-spiking neurons. The Journal of Neuroscience, 28(15), 3897–3910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atzori, M., Flores Hernandez, J., & Pineda, J. C. (2004). Interlaminar differences of spike activation threshold in the auditory cortex of the rat. Hearing Research, 1899(1-2), 101–106.

    Article  Google Scholar 

  • Atzori, M., Lei, S., Evans, D. I., Kanold, P. O., Phillips-Tansey, E., McIntyre, O., & McBain, C. J. (2001). Differential synaptic processing separates stationary from transient inputs to the auditory cortex. Nature Neuroscience, 4(12), 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Ballesteros-Yanez, I., Munoz, A., Contreras, J., Gonzalez, J., Rodriguez-Veiga, E., & DeFelipe, J. (2005). Double bouquet cell in the human cerebral cortex and a comparison with other mammals. The Journal of Comparative Neurology, 486(4), 344–360.

    Article  Google Scholar 

  • Baloyannis, S. J., Manolides, S., Arzoglou, L., Costa, V., & Manolides, L. (1993). The structural organization of layer I of the adult human acoustic cortex. A Golgi and electron microscopy study. Acta Oto-Laryngologica, 113(4), 502–506.

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay, S., Shamma, S. A., & Kanold, P. O. (2010). Dichotomy of functional organization in the mouse auditory cortex. Nature Neuroscience, 13(3), 361–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bannister, A. P. (2005). Inter- and intra-laminar connections of pyramidal cells in the neocortex. Neuroscience Research, 53(2), 95–103.

    Article  PubMed  Google Scholar 

  • Barbour, D. L., & Callaway, E. M. (2008). Excitatory local connections of superficial neurons in rat auditory cortex. The Journal of Neuroscience, 28(44), 11174–11185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizley, J. K., & Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nature Reviews Neuroscience, 14(10), 693–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bizley, J. K., Maddox, R. K., & Lee, A. K. (2016). Defining auditory-visual objects: behavioral tests and physiological mechanisms. Trends in Neurosciences, 399(2), 74–85.

    Article  CAS  Google Scholar 

  • Bizley, J. K., Nodal, F. R., Bajo, V. M., Nelken, I., & King, A. J. (2007). Physiological and anatomical evidence for multisensory interactions in auditory cortex. Cerebral Cortex, 17(9), 2172–2189.

    Article  PubMed  Google Scholar 

  • Brosch, M., Budinger, E., & Scheich, H. (2013). Different synchronization rules in primary and nonprimary auditory cortex of monkeys. Journal of Cognitive Neuroscience, 25(9), 1517–1526.

    Article  PubMed  Google Scholar 

  • Brosch, M., Selezneva, E., & Scheich, H. (2005). Nonauditory events of a behavioral procedure activate auditory cortex of highly trained monkeys. The Journal of Neuroscience, 25(29), 6797–6806.

    Article  CAS  PubMed  Google Scholar 

  • Budinger, E., & Heil, P. (2005). Anatomy of the auditory cortex. In S. Greenberg & W. A. Ainsworth (Eds.), Listening to speech (pp. 91–113). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Budinger, E., Heil, P., Hess, A., & Scheich, H. (2006). Multisensory processing via early cortical stages: Connections of the primary auditory cortical field with other sensory systems. Neuroscience, 143(4), 1065–1083.

    Article  CAS  PubMed  Google Scholar 

  • Budinger, E., Heil, P., & Scheich, H. (2000). Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience, 12(7), 2425–2451.

    Article  CAS  PubMed  Google Scholar 

  • Budinger, E., & Scheich, H. (2009). Anatomical connections suitable for the direct processing of neuronal information of different modalities via the rodent primary auditory cortex. Hearing Research, 258(1-2), 16–27.

    Article  PubMed  Google Scholar 

  • Buxhoeveden, D. P., & Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain, 125(5), 935–951.

    Article  PubMed  Google Scholar 

  • Callaway, E. M., & Katz, L. C. (1993). Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proceedings of the National Academy of Sciences of the United States of America, 990(16), 7661–7665.

    Article  Google Scholar 

  • Campi, K. L., Bales, K. L., Grunewald, R., & Krubitzer, L. (2010). Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): Evidence for multisensory processing in primary sensory areas. Cerebral Cortex, 20(1), 89–108.

    Article  PubMed  Google Scholar 

  • Cappe, C., & Barone, P. (2005). Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. European Journal of Neuroscience, 22(11), 2886–2902.

    Article  PubMed  Google Scholar 

  • Celio, M. R. (1986). Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. Science, 231, 995–997.

    Article  CAS  PubMed  Google Scholar 

  • Chabot, N., Butler, B. E., & Lomber, S. G. (2015). Differential modification of cortical and thalamic projections to cat primary auditory cortex following early- and late-onset deafness. The Journal of Comparative Neurology, 523(15), 2297–2320.

    Article  PubMed  Google Scholar 

  • Chen, X., Leischner, U., Rochefort, N. L., Nelken, I., & Konnerth, A. (2011). Functional mapping of single spines in cortical neurons in vivo. Nature, 475(7357), 501–505.

    Article  CAS  PubMed  Google Scholar 

  • Code, R. A., & Winer, J. A. (1985). Commissural neurons in layer III of cat primary auditory cortex (AI): Pyramidal and non-pyramidal cell input. The Journal of Comparative Neurology, 242(4), 485–510.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, L., & Mizrahi, A. (2015). Plasticity during motherhood: Changes in excitatory and inhibitory layer 2/3 neurons in auditory cortex. The Journal of Neuroscience, 35(4), 1806–1815.

    Article  CAS  PubMed  Google Scholar 

  • da Costa, N. M., & Martin, K. A. (2011). How thalamus connects to spiny stellate cells in the cat’s visual cortex. The Journal of Neuroscience, 31(8), 2925–2937.

    Article  PubMed  CAS  Google Scholar 

  • Cowan, A. I., & Stricker, C. (2004). Functional connectivity in layer IV local excitatory circuits of rat somatosensory cortex. Journal of Neurophysiology, 992(4), 2137–2150.

    Article  Google Scholar 

  • Cruikshank, S. J., Rose, H. J., & Metherate, R. (2002). Auditory thalamocortical synaptic transmission in vitro. Journal of Neurophysiology, 87(1), 361–384.

    Article  PubMed  Google Scholar 

  • David, S. V., Fritz, J. B., & Shamma, S. A. (2012). Task reward structure shapes rapid receptive field plasticity in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 1099(6), 2144–2149.

    Article  Google Scholar 

  • Deans, M. R., Gibson, J. R., Sellitto, C., Connors, B. W., & Paul, D. L. (2001). Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron, 31(3), 477–485.

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe, J. (2002). Cortical interneurons: From Cajal to 2001. Progress in Brain Research, 136, 215–238.

    Article  PubMed  Google Scholar 

  • DeFelipe, J., Alonso-Nanclares, L., & Arellano, J. I. (2002). Microstructure of the neocortex: Comparative aspects. Journal of Neurocytology, 31(3-5), 299–316.

    Article  PubMed  Google Scholar 

  • DeFelipe, J., Lopez-Cruz, P. L., Benavides-Piccione, R., Bielza, C., Larrañaga, P., Anderson, S., et al. (2013). New insights into the classification and nomenclature of cortical GABAergic interneurons. Nature Reviews Neuroscience, 14(3), 202–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, R., Kao, J. P.-Y., & Kanold, P. O. (2017). Distinct translaminar glutamatergic circuits to GABAergic interneurons in the neonatal auditory cortex. Cell Reports, 199(6), 1141–1150.

    Article  CAS  Google Scholar 

  • Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–451.

    Article  CAS  PubMed  Google Scholar 

  • von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik des erwachsenen Menschen. Berlin: Springer.

    Google Scholar 

  • Falchier, A., Schroeder, C. E., Hackett, T. A., Lakatos, P., Nascimento-Silva, S., Ulbert, I., et al. (2010). Projection from visual areas V2 and prostriata to caudal auditory cortex in the monkey. Cerebral Cortex, 20(7), 1529–1538.

    Article  PubMed  Google Scholar 

  • Favorov, O. V., & Diamond, M. E. (1990). Demonstration of discrete place-defined columns—segregates—in the cat SI. The Journal of Comparative Neurology, 2998(1), 97–112.

    Article  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1(1), 1–47.

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick, D. C., & Henson, O. W., Jr. (1994). Cell types in the mustached bat auditory cortex. Brain, Behavior and Evolution, 43(2), 79–91.

    Google Scholar 

  • Fritz, J. B., Elhilali, M., David, S. V., & Shamma, S. A. (2007). Auditory attention—focusing the searchlight on sound. Current Opinion in Neurobiology, 17(4), 437–455.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, J., Shamma, S., Elhilali, M., & Klein, D. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6(11), 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Froemke, R. C., Merzenich, M. M., & Schreiner, C. E. (2007). A synaptic memory trace for cortical receptive field plasticity. Nature, 450(7168), 425–429.

    Article  CAS  PubMed  Google Scholar 

  • Froemke, R. C., & Schreiner, C. E. (2015). Synaptic plasticity as a cortical coding scheme. Current Opinion in Neurobiology, 35, 185–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, K. M., Johnston, T. A., Shah, A. S., Arnold, L., Smiley, J., Hackett, T. A., et al. (2003). Auditory cortical neurons respond to somatosensory stimulation. The Journal of Neuroscience, 23(20), 7510–7515.

    CAS  PubMed  Google Scholar 

  • Ghosh, A., Antonini, A., McConnell, S. K., & Shatz, C. J. (1990). Requirement for subplate neurons in the formation of thalamocortical connections. Nature, 347(6289), 179–181.

    Article  CAS  PubMed  Google Scholar 

  • Ghosh, A., & Shatz, C. J. (1992). Involvement of subplate neurons in the formation of ocular dominance columns. Science, 255(5050), 1441–1443.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Reviews Neuroscience, 5(11), 887–892.

    Article  CAS  PubMed  Google Scholar 

  • Guo, W., Chambers, A. R., Darrow, K. N., Hancock, K. E., Shinn-Cunningham, B. G., & Polley, D. B. (2012). Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. The Journal of Neuroscience, 32(27), 9159–9172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, T. A., Barkat, T. R., O'Brien, B. M., Hensch, T. K., & Polley, D. B. (2011). Linking topography to tonotopy in the mouse auditory thalamocortical circuit. The Journal of Neuroscience, 31(8), 2983–2995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett, T. A., Preuss, T. M., & Kaas, J. H. (2001). Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. The Journal of Comparative Neurology, 441(3), 197–222.

    Article  CAS  PubMed  Google Scholar 

  • Hefti, B. J., & Smith, P. H. (2000). Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. Journal of Neurophysiology, 83(5), 2626–2638.

    Article  CAS  PubMed  Google Scholar 

  • Henschke, J. U., Noesselt, T., Scheich, H., & Budinger, E. (2015). Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices. Brain Structure and Function, 220(2), 955–977.

    Article  PubMed  Google Scholar 

  • Henschke, J. U., Oelschlegel, A. M., Angenstein, F., Ohl, F. W., Goldschmidt, J., Kanold, P. O., & Budinger, E. (2017). Early sensory experience influences the development of multisensory thalamocortical and intracortical connections, Brain Structure and Function, doi: 10.1007/s00429-017-1549-1. [Epub ahead of print].

  • Hestrin, S., & Galarreta, M. (2005). Electrical synapses define networks of neocortical GABAergic neurons. Trends in Neurosciences, 28(6), 304–309.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C. L., & Winer, J. A. (2000). Auditory thalamocortical projections in the cat: Laminar and areal patterns of input. The Journal of Comparative Neurology, 427(2), 302–331.

    Article  CAS  PubMed  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society of London B: Biological Sciences, 1998(1130), 1–59.

    Article  Google Scholar 

  • Huggenberger, S., Vater, M., & Deisz, R. A. (2009). Interlaminar differences of intrinsic properties of pyramidal neurons in the auditory cortex of mice. Cerebral Cortex, 199(5), 1008–1018.

    Article  Google Scholar 

  • Imig, T. J., & Adrian, H. O. (1977). Binaural columns in the primary field (A1) of cat auditory cortex. Brain Research, 138, 241–257.

    Article  CAS  PubMed  Google Scholar 

  • Inan, M., & Anderson, S. A. (2014). The chandelier cell, form and function. Current Opinion in Neurobiology, 26, 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Ji, X. Y., Zingg, B., Mesik, L., Xiao, Z., Zhang, L. I., & Tao, H. W. (2016). Thalamocortical innervation pattern in mouse auditory and visual cortex: Laminar and cell-type specificity. Cerebral Cortex, 26(6), 2612–2625.

    Article  PubMed  Google Scholar 

  • Jones, E. G. (2000). Microcolumns in the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 997(10), 5019–5021.

    Article  Google Scholar 

  • Joshi, A., Middleton, J. W., Anderson, C. T., Borges, K., Suter, B. A., Shepherd, G. M., & Tzounopoulos, T. (2015). Cell-specific activity-dependent fractionation of layer 2/3—5B excitatory signaling in mouse auditory cortex. The Journal of Neuroscience, 35(7), 3112–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaas, J. H. (2011). The evolution of auditory cortex: The core areas. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 407–427). New York: Springer.

    Chapter  Google Scholar 

  • Kadia, S. C., & Wang, X. (2003). Spectral integration in A1 of awake primates: Neurons with single- and multi-peaked tuning characteristics. Journal of Neurophysiology, 899(3), 1603–1622.

    Article  Google Scholar 

  • Kanold, P. O., Kara, P., Reid, R. C., & Shatz, C. J. (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632), 521–525.

    Article  CAS  PubMed  Google Scholar 

  • Kanold, P. O., & Luhmann, H. J. (2010). The subplate and early cortical circuits. Annual Review of Neuroscience, 33, 23–48.

    Article  CAS  PubMed  Google Scholar 

  • Kanold, P. O., Nelken, I., & Polley, D. B. (2014). Local versus global scales of organization in auditory cortex. Trends in Neurosciences, 37(9), 502–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanold, P. O., & Shatz, C. J. (2006). Subplate neurons regulate maturation of cortical inhibition and outcome of ocular dominance plasticity. Neuron, 51(5), 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Khouri, L., & Nelken, I. (2015). Detecting the unexpected. Current Opinion in Neurobiology, 35, 142–147.

    Article  CAS  PubMed  Google Scholar 

  • Kirischuk, S., Luhmann, H. J., & Kilb, W. (2014). Cajal-Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience, 275, 33–46.

    Article  CAS  PubMed  Google Scholar 

  • Kratz, M. B., & Manis, P. B. (2015). Spatial organization of excitatory synaptic inputs to layer 4 neurons in mouse primary auditory cortex. Frontiers in Neural Circuits, 99, 17. https://doi.org/10.3389/fncir.2015.00017.

    Google Scholar 

  • Kurt, S., Deutscher, A., Crook, J. M., Ohl, F. W., Budinger, E., Moeller, C. K., et al. (2008). Auditory cortical contrast enhancing by global winner-take-all inhibitory interactions. PLoS One, 3(3), e1735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, C. C., & Imaizumi, K. (2013). Functional convergence of thalamic and intrinsic projections to cortical layers 4 and 6. Neurophysiology, 45(5-6), 396–406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, C. C., Lam, Y. W., & Sherman, S. M. (2012). Intracortical convergence of layer 6 neurons. Neuroreport, 23(12), 736–740.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, C. C., & Sherman, S. M. (2008). Synaptic properties of thalamic and intracortical inputs to layer 4 of the first- and higher-order cortical areas in the auditory and somatosensory systems. Journal of Neurophysiology, 100(1), 317–326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy, R. B., & Reyes, A. D. (2012). Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex. Journal of Neuroscience, 32(16), 5609–5619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, L. Y., Ji, X. Y., Liang, F., Li, Y. T., Xiao, Z., Tao, H. W., & Zhang, L. I. (2014). A feedforward inhibitory circuit mediates lateral refinement of sensory representation in upper layer 2/3 of mouse primary auditory cortex. The Journal of Neuroscience, 34(41), 13670–13683.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, L. Y., Xiong, X. R., Ibrahim, L. A., Yuan, W., Tao, H. W., & Zhang, L. I. (2015). Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex. Cerebral Cortex, 25(7), 1782–1791.

    Article  PubMed  Google Scholar 

  • Linden, J. F., & Schreiner, C. E. (2003). Columnar transformations in auditory cortex? A comparison to visual and somatosensory cortices. Cerebral Cortex, 13(1), 83–89.

    Article  PubMed  Google Scholar 

  • Liu, B. H., Wu, G. K., Arbuckle, R., Tao, H. W., & Zhang, L. I. (2007). Defining cortical frequency tuning with recurrent excitatory circuitry. Nature Neuroscience, 10(12), 1594–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llano, D. A., & Sherman, S. M. (2009). Differences in intrinsic properties and local network connectivity of identified layer 5 and layer 6 adult mouse auditory corticothalamic neurons support a dual corticothalamic projection hypothesis. Cerebral Cortex, 199(12), 2810–2826.

    Article  Google Scholar 

  • Lubke, J., Egger, V., Sakmann, B., & Feldmeyer, D. (2000). Columnar organization of dendrites and axons of single and synaptically coupled excitatory spiny neurons in layer 4 of the rat barrel cortex. The Journal of Neuroscience, 20(14), 5300–5311.

    CAS  PubMed  Google Scholar 

  • Lund, J. S. (1984). Spiny stellate neurons. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Vol. 1. Cellular components of the cerebral cortex (pp. 255–308). New York: Plenum Press.

    Google Scholar 

  • Maor, I., Shalev, A., & Mizrahi, A. (2016). Distinct spatiotemporal response properties of excitatory versus inhibitory neurons in the mouse auditory cortex. Cerebral Cortex, 26(11), 4242–4252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marin-Padilla, M. (1984). Neurons of layer I. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Vol. 1. Cellular components of the cerebral cortex (pp. 447–478). New York: Plenum Press.

    Google Scholar 

  • Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, C. A., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163(2), 456–492.

    Article  CAS  PubMed  Google Scholar 

  • Marx, M., Qi, G., Hanganu-Opatz, I. L., Kilb, W., Luhmann, H. J., & Feldmeyer, D. (2017). Neocortical layer 6b as a remnant of the subplate—a morphological comparison. Cerebral Cortex, 27(2), 1011–1026.

    PubMed  Google Scholar 

  • Matsubara, J. A., & Phillips, D. P. (1988). Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. The Journal of Comparative Neurology, 268, 38–48.

    Article  CAS  PubMed  Google Scholar 

  • McMullen, N. T., & Glaser, E. M. (1982). Morphology and laminar distribution of nonpyramidal neurones in the auditory cortex of the rabbit. The Journal of Comparative Neurology, 208, 85–106.

    Article  CAS  PubMed  Google Scholar 

  • Mendizabal-Zubiaga, J. L., Reblet, C., & Bueno-Lopez, J. L. (2007). The underside of the cerebral cortex: Layer V/VI spiny inverted neurons. Journal of Anatomy, 211(2), 223–236.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Kao, J. P., & Kanold, P. O. (2014). Differential signaling to subplate neurons by spatially specific silent synapses in developing auditory cortex. The Journal of Neuroscience, 34(26), 8855–8864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Kao, J. P., Lee, H. K., & Kanold, P. O. (2015). Visual deprivation causes refinement of intracortical circuits in the auditory cortex. Cell Reports, 12(6), 955–964. https://doi.org/10.1016/j.celrep.2015.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X., Kao, J. P., Lee, H. K., & Kanold, P. O. (2017). Intracortical circuits in thalamorecipient layers of auditory cortex refine after visual deprivation. eNeuro, 4(2). doi:https://doi.org/10.1523/ENEURO.0092-17.201.

  • Meng, X., Winkowski, D. E., Kao, J. P., & Kanold, P. O. (2017). Sublaminar subdivision of mouse auditory cortex layer 2/3 based on functional translaminar connections. The Journal of Neuroscience, 37(42), 10200–10214. https://doi.org/10.1523/JNEUROSCI.1361-17.2017.

    Article  PubMed  Google Scholar 

  • Meredith, M. A., & Allman, B. L. (2015). Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets. European Journal of Neuroscience, 41(5), 686–698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meredith, M. A., & Lomber, S. G. (2017). Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hearing Research, 343, 83–91.

    Article  PubMed  Google Scholar 

  • Metherate, R., & Aramakis, V. B. (1999). Intrinsic electrophysiology of neurons in thalamorecipient layers of developing rat auditory cortex. Developmental Brain Research, 115(2), 131–144.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, G., Goffinet, A. M., & Fairen, A. (1999). What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex. Cerebral Cortex, 99(8), 765–775.

    Article  Google Scholar 

  • Meyer, G., Gonzalez-Hernandez, T. H., & Ferres-Torres, R. (1989). The spiny stellate neurons in layer IV of the human auditory cortex. A Golgi study. Neuroscience, 33(3), 489–498.

    Article  CAS  PubMed  Google Scholar 

  • Mitani, A., Shimokouchi, M., Itoh, K., Nomura, S., Kudo, M., & Mizuno, N. (1985). Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. The Journal of Comparative Neurology, 235, 430–447.

    Article  CAS  PubMed  Google Scholar 

  • Moore, A. K., & Wehr, M. (2013). Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency. The Journal of Neuroscience, 33(34), 13713–13723.

    Google Scholar 

  • Morel, A., Garraghty, P. E., & Kaas, J. H. (1993). Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. The Journal of Comparative Neurology, 335, 437–459.

    Article  CAS  PubMed  Google Scholar 

  • Morrison, J. H., Magistretti, P. J., Benoit, R., & Bloom, F. E. (1984). The distribution and morphological characteristics of the intracortical VIP-positive cell: An immunohistochemical analysis. Brain Research, 2992(2), 269–282.

    Article  Google Scholar 

  • de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006a). Thalamic connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. The Journal of Comparative Neurology, 4996(1), 72–96.

    Article  Google Scholar 

  • de la Mothe, L. A., Blumell, S., Kajikawa, Y., & Hackett, T. A. (2006b). Cortical connections of the auditory cortex in marmoset monkeys: Core and medial belt regions. The Journal of Comparative Neurology, 4996(1), 27–71.

    Article  Google Scholar 

  • Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120(4), 701–722.

    Article  PubMed  Google Scholar 

  • Murray, M. M., Molholm, S., Michel, C. M., Heslenfeld, D. J., Ritter, W., Javitt, D. C., et al. (2005). Grabbing your ear: Rapid auditory-somatosensory multisensory interactions in low-level sensory cortices are not constrained by stimulus alignment. Cerebral Cortex, 15(7), 963–974.

    Article  PubMed  Google Scholar 

  • Nelson, A., Schneider, D. M., Takatoh, J., Sakurai, K., Wang, F., & Mooney, R. (2013). A circuit for motor cortical modulation of auditory cortical activity. The Journal of Neuroscience, 33(36), 14342–14353.

    Google Scholar 

  • Nieuwenhuys, R. (1994). The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anatomy and Embryology (Berlin), 1990(4), 307–337.

    Google Scholar 

  • Noesselt, T., Tyll, S., Boehler, C. N., Budinger, E., Heinze, H. J., & Driver, J. (2010). Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. The Journal of Neuroscience, 30(41), 13609–13623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norena, A. J., Gourevitch, B., Pienkowski, M., Shaw, G., & Eggermont, J. J. (2008). Increasing spectrotemporal sound density reveals an octave-based organization in cat primary auditory cortex. The Journal of Neuroscience, 28(36), 8885–8896.

    Article  CAS  PubMed  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1997). Learning-induced dynamic receptive field changes in primary auditory cortex of the unanaesthetized Mongolian gerbil. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(6), 685–696.

    Article  CAS  Google Scholar 

  • Ojima, H. (1994). Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cerebral Cortex, 4(6), 646–663.

    Article  CAS  PubMed  Google Scholar 

  • Ojima, H., Honda, C. N., & Jones, E. G. (1991). Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cerebral Cortex, 1, 80–94.

    Article  CAS  PubMed  Google Scholar 

  • Ojima, H., Honda, C. N., & Jones, E. G. (1992). Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex. Cerebral Cortex, 2(3), 197–216.

    Article  CAS  PubMed  Google Scholar 

  • Ojima, H., & Murakami, K. (2002). Intracellular characterization of suppressive responses in supragranular pyramidal neurons of cat primary auditory cortex in vivo. Cerebral Cortex, 12(10), 1079–1091.

    Article  PubMed  Google Scholar 

  • Oswald, A. M., & Reyes, A. D. (2008). Maturation of intrinsic and synaptic properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal of Neurophysiology, 99(6), 2998–3008.

    Article  PubMed  PubMed Central  Google Scholar 

  • Otazu, G. H., Tai, L. H., Yang, Y., & Zador, A. M. (2009). Engaging in an auditory task suppresses responses in auditory cortex. Nature Neuroscience, 12(5), 646–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oviedo, H. V., Bureau, I., Svoboda, K., & Zador, A. M. (2010). The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits. Nature Neuroscience, 13(11), 1413–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters, A., & Saint Marie, R. L. (1984). Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Vol. 1. Cellular components of the cerebral cortex (pp. 419–445). New York: Plenum Press.

    Google Scholar 

  • Petrus, E., Isaiah, A., Jones, A. P., Li, D., Wang, H., Lee, H. K., & Kanold, P. O. (2014). Crossmodal induction of thalamocortical potentiation leads to enhanced information processing in the auditory cortex. Neuron, 81(3), 664–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrus, E., Rodriguez, G., Patterson, R., Connor, B., Kanold, P. O., & Lee, H. K. (2015). Vision loss shifts the balance of feedforward and intracortical circuits in opposite directions in mouse primary auditory and visual cortices. The Journal of Neuroscience, 35(23), 8790–8801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postma, F., Liu, C. H., Dietsche, C., Khan, M., Lee, H. K., Paul, D., & Kanold, P. O. (2011). Electrical synapses formed by connexin36 regulate inhibition- and experience-dependent plasticity. Proceedings of the National Academy of Sciences of the United States of America, 108(33), 13770–13775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto, J. J., Peterson, B. A., & Winer, J. A. (1994a). Laminar distribution and neuronal targets of GABAergic axon terminals in cat primary auditory cortex (AI). The Journal of Comparative Neurology, 344, 383–402.

    Article  CAS  PubMed  Google Scholar 

  • Prieto, J. J., Peterson, B. A., & Winer, J. A. (1994b). Morphology and spatial distribution of GABAergic neurons in cat primary auditory cortex (AI). The Journal of Comparative Neurology, 344, 349–382.

    Article  CAS  PubMed  Google Scholar 

  • Prieto, J. J., & Winer, J. A. (1999). Layer VI in cat primary auditory cortex: Golgi study and sublaminar origins of projection neurons. The Journal of Comparative Neurology, 404(3), 332–358.

    Article  CAS  PubMed  Google Scholar 

  • Read, H. L., Winer, J. A., & Schreiner, C. E. (2001). Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proceedings of the National Academy of Sciences of the United States of America, 998(14), 8042–8047.

    Article  Google Scholar 

  • Reep, R. L. (2000). Cortical layer VII and persistent subplate cells in mammalian brains. Brain, Behavior and Evolution, 56(4), 212–234.

    Article  CAS  PubMed  Google Scholar 

  • Rockel, A. J., Hiorns, R. W., & Powell, T. P. (1980). The basic uniformity in structure of the neocortex. Brain, 103(2), 221–244.

    Article  CAS  PubMed  Google Scholar 

  • Rockland, K. S., & Ichinohe, N. (2004). Some thoughts on cortical minicolumns. Experimental Brain Research, 158(3), 265–277.

    Article  PubMed  Google Scholar 

  • Rothschild, G., Nelken, I., & Mizrahi, A. (2010). Functional organization and population dynamics in the mouse primary auditory cortex. Nature Neuroscience, 13(3), 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller, E. M., Simm, G. M., Villa, A. E. P., de Ribaupierre, Y., & de Ribaupierre, F. (1991). Auditory corticocortical interconnections in the cat: Evidence for parallel and hierarchical arrangement of the auditory cortical areas. Experimental Brain Research, 86, 483–503.

    Article  CAS  PubMed  Google Scholar 

  • Rouiller, E. M., & Welker, E. (2000). A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Research Bulletin, 53(6), 727–741.

    Article  CAS  PubMed  Google Scholar 

  • Rudy, B., Fishell, G., Lee, S., & Hjerling-Leffler, J. (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Developmental Neurobiology, 71(1), 45–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saldeitis, K., Happel, M. F., Ohl, F. W., Scheich, H., & Budinger, E. (2014). Anatomy of the auditory thalamocortical system in the Mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. The Journal of Comparative Neurology, 522(10), 2397–2430.

    Article  PubMed  Google Scholar 

  • Sanides, F., & Sanides, D. (1972). The “extraverted neurons” of the mammalian cerebral cortex. Zeitschrift für Anatatomie und Entwicklungsgeschichte, 136(3), 272–293.

    Article  CAS  Google Scholar 

  • Scheich, H., Brechmann, A., Brosch, M., Budinger, E., & Ohl, F. W. (2007). The cognitive auditory cortex: Task-specificity of stimulus representations. Hearing Research, 2299(1-2), 213–224.

    Article  Google Scholar 

  • Shepherd, G. M., Pologruto, T. A., & Svoboda, K. (2003). Circuit analysis of experience-dependent plasticity in the developing rat barrel cortex. Neuron, 38(2), 277–289.

    Article  CAS  PubMed  Google Scholar 

  • Smiley, J. F., & Falchier, A. (2009). Multisensory connections of monkey auditory cerebral cortex. Hearing Research, 258(1-2), 37–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, P. H., Manning, K. A., & Uhlrich, D. J. (2010). Evaluation of inputs to rat primary auditory cortex from the suprageniculate nucleus and extrastriate visual cortex. The Journal of Comparative Neurology, 518(18), 3679–3700.

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith, P. H., & Populin, L. C. (2001). Fundamental differences between the thalamocortical recipient layers of the cat auditory and visual cortices. The Journal of Comparative Neurology, 436(4), 508–519.

    Article  CAS  PubMed  Google Scholar 

  • Smith, P. H., Uhlrich, D. J., Manning, K. A., & Banks, M. I. (2012). Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. The Journal of Comparative Neurology, 520(1), 34–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somogyi, P., & Cowey, A. (1984). Double bouquet cells. In A. Peters & E. G. Jones (Eds.), Cerebral cortex: Vol. 1. Cellular components of the cerebral cortex (pp. 337–360). New York: Plenum Press.

    Google Scholar 

  • Staiger, J. F., Flagmeyer, I., Schubert, D., Zilles, K., Kötter, R., & Luhmann, H. J. (2004). Functional diversity of layer IV spiny neurons in rat somatosensory cortex: Quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cerebral Cortex, 14(6), 690–701.

    Article  PubMed  Google Scholar 

  • Steger, R. M., Ramos, R. L., Cao, R., Yang, Q., Chen, C. C., Dominici, J., & Brumberg, J. C. (2013). Physiology and morphology of inverted pyramidal neurons in the rodent neocortex. Neuroscience, 248, 165–179.

    Article  CAS  PubMed  Google Scholar 

  • Stiebler, I., Neulist, R., Fichtel, I., & Ehret, G. (1997). The auditory cortex of the house mouse: Left-right differences, tonotopic organization and quantitative analysis of frequency representation. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 181(6), 559–571.

    Article  CAS  Google Scholar 

  • Sun, Y. J., Kim, Y. J., Ibrahim, L. A., Tao, H. W., & Zhang, L. I. (2013). Synaptic mechanisms underlying functional dichotomy between intrinsic-bursting and regular-spiking neurons in auditory cortical layer 5. The Journal of Neuroscience, 33(12), 5326–5339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutter, M. L., & Schreiner, C. E. (1991). Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 65(5), 1207–1226.

    Article  CAS  PubMed  Google Scholar 

  • Taaseh, N., Yaron, A., & Nelken, I. (2011). Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One, 6(8), e23369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan, A. Y., Atencio, C. A., Polley, D. B., Merzenich, M. M., & Schreiner, C. E. (2007). Unbalanced synaptic inhibition can create intensity-tuned auditory cortex neurons. Neuroscience, 146(1), 449–462.

    Article  CAS  PubMed  Google Scholar 

  • Tervo, D. G., Hwang, B. Y., Viswanathan, S., Gaj, T., Lavzin, M., Ritola, K. D., et al. (2016). A designer AAV variant permits efficient retrograde access to projection neurons. Neuron, 992(2), 372–382.

    Article  CAS  Google Scholar 

  • Thomson, A. M., & Bannister, A. P. (1998). Postsynaptic pyramidal target selection by descending layer III pyramidal axons: Dual intracellular recordings and biocytin filling in slices of rat neocortex. Neuroscience, 84(3), 669–683.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, A. M., & Lamy, C. (2007). Functional maps of neocortical local circuitry. Frontiers in Neuroscience, 1(1), 19–42. https://doi.org/10.3389/neuro.01.1.1.002.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolner, E. A., Sheikh, A., Yukin, A. Y., Kaila, K., & Kanold, P. O. (2012). Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. The Journal of Neuroscience, 32(2), 692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: From cellular properties to circuits. Neuron, 991(2), 260–292.

    Article  CAS  Google Scholar 

  • Verbny, Y. I., Erdelyi, F., Szabo, G., & Banks, M. I. (2006). Properties of a population of GABAergic cells in murine auditory cortex weakly excited by thalamic stimulation. Journal of Neurophysiology, 996(6), 3194–3208.

    Article  CAS  Google Scholar 

  • Viswanathan, S., Bandyopadhyay, S., Kao, J. P., & Kanold, P. O. (2012). Changing microcircuits in the subplate of the developing cortex. The Journal of Neuroscience, 32(5), 1589–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan, S., Sheikh, A., Looger, L. L., & Kanold, P. O. (2017). Molecularly defined subplate neurons project both to thalamocortical recipient layers and thalamus. Cerebral Cortex, 27(10), 4759–4768.

    PubMed  Google Scholar 

  • Wallace, M. N., & Bajwa, S. (1991). Patchy intrinsic connections of the ferret primary auditory cortex. Neuroreport, 2(8), 417–420.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, M. N., & Harper, M. S. (1997). Callosal connections of the ferret primary auditory cortex. Experimental Brain Research, 116(2), 367–374.

    Article  CAS  PubMed  Google Scholar 

  • Wallace, M. N., & He, J. (2011). Intrinsic connections of the auditory cortex. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 133–145). New York: Springer.

    Chapter  Google Scholar 

  • Wallace, M. N., Kitzes, L. M., & Jones, E. G. (1991). Intrinsic inter- and intra-laminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Experimental Brain Research, 86, 527–544.

    CAS  PubMed  Google Scholar 

  • Wallace, M. T., Ramachandran, R., & Stein, B. E. (2004). A revised view of sensory cortical parcellation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2167–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., & Markram, H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12(4), 395–410.

    Article  PubMed  Google Scholar 

  • Wang, Y., Toledo-Rodriguez, M., Gupta, A., Wu, C., Silberberg, G., Luo, J., & Markram, H. (2004). Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat. Journal of Physiology, 561(1), 65–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins, P. V., Kao, J. P., & Kanold, P. O. (2014). Spatial pattern of intra-laminar connectivity in supragranular mouse auditory cortex. Frontiers in Neural Circuits, 8, 15. https://doi.org/10.3389/fncir.2014.00015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wehr, M., & Zador, A. M. (2003). Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature, 426(6965), 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Wess, J. M., Isaiah, A., Watkins, P. V., & Kanold, P. O. (2017). Subplate neurons are the first cortical neurons to respond to sensory stimuli. Proceedings of the National Academy of Sciences of the United States of America, 114(47), 12602–12607. https://doi.org/10.1073/pnas.1710793114. Epub 2017 Nov 7.

  • Winer, J. A. (1984a). The pyramidal neurons in layer III of cat primary auditory cortex (AI). The Journal of Comparative Neurology, 2299, 476–496.

    Article  Google Scholar 

  • Winer, J. A. (1984b). The non-pyramidal cells in layer III of cat primary auditory cortex (AI). The Journal of Comparative Neurology, 2299, 512–530.

    Article  Google Scholar 

  • Winer, J. A. (1984c). Anatomy of layer IV in cat primary auditory cortex (AI). The Journal of Comparative Neurology, 224, 535–567.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A. (1985). Structure of layer II in cat primary auditory cortex (AI). The Journal of Comparative Neurology, 238, 10–37.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A. (1992). The functional architecture of the medial geniculate body and the primary auditory cortex. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 222–409). New York: Springer.

    Chapter  Google Scholar 

  • Winer, J. A. (2006). Decoding the auditory corticofugal systems. Hearing Research, 212(1-2), 1–8.

    Article  PubMed  Google Scholar 

  • Winer, J. A. (2011a). A profile of auditory forebrain connections and circuits. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 41–74). New York: Springer.

    Chapter  Google Scholar 

  • Winer, J. A. (2011b). Neurochemical organization of the medial geniculate body and auditory cortex. In J. A. Winer & C. E. Schreiner (Eds.), The auditory cortex (pp. 209–234). New York: Springer.

    Chapter  Google Scholar 

  • Winer, J. A., & Larue, D. T. (1989). Populations of GABAergic neurons and axons in layer I of rat auditory cortex. Neuroscience, 33(3), 499–515.

    Article  CAS  PubMed  Google Scholar 

  • Winer, J. A., & Prieto, J. J. (2001). Layer V in cat primary auditory cortex (AI): Cellular architecture and identification of projection neurons. The Journal of Comparative Neurology, 434(4), 379–412.

    Article  CAS  PubMed  Google Scholar 

  • Winguth, S. D., & Winer, J. A. (1986). Corticocortical connections of cat primary auditory cortex (AI): Laminar organization and identification of supragranular neuron projecting to area AII. The Journal of Comparative Neurology, 248, 36–56.

    Article  CAS  PubMed  Google Scholar 

  • Winkowski, D. E., & Kanold, P. O. (2013). Laminar transformation of frequency organization in auditory cortex. The Journal of Neuroscience, 33(4), 1498–1508.

    Google Scholar 

  • Woodruff, A. R., Anderson, S. A., & Yuste, R. (2010). The enigmatic function of chandelier cells. Frontiers in Neuroscience, 4, 201. https://doi.org/10.3389/fnins.2010.00201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, G. K., Arbuckle, R., Liu, B. H., Tao, H. W., & Zhang, L. I. (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1), 132–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G. K., Tao, H. W., & Zhang, L. I. (2011). From elementary synaptic circuits to information processing in primary auditory cortex. Neuroscience and Biobehavioral Reviews, 35(10), 2094–2104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, L. I., Tan, A. Y., Schreiner, C. E., & Merzenich, M. M. (2003). Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature, 424(6945), 201–205.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, C., Kao, J. P., & Kanold, P. O. (2009). Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. The Journal of Neuroscience, 299(49), 15479–15488.

    Article  CAS  Google Scholar 

  • Zhou, Y., Liu, B. H., Wu, G. K., Kim, Y. J., Xiao, Z., Tao, H. W., & Zhang, L. I. (2010). Preceding inhibition silences layer 6 neurons in auditory cortex. Neuron, 65(5), 706–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Patrick Kanold was supported by a grant from the National Institutes of Health (RO1 DC009607). The authors thank Dr. Li Zhang (USC) for helpful comments on the manuscript.

Compliance with Ethics Statement

Eike Budinger declares that he has no conflict of interest.

Patrick Kanold declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick O. Kanold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budinger, E., Kanold, P.O. (2018). Auditory Cortex Circuits. In: Oliver, D., Cant, N., Fay, R., Popper, A. (eds) The Mammalian Auditory Pathways. Springer Handbook of Auditory Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-71798-2_8

Download citation

Publish with us

Policies and ethics