Skip to main content

Microcircuits of the Ventral Cochlear Nucleus

  • Chapter
  • First Online:

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 65))

Abstract

The neurons of the cochlear nuclei are the first central processors of auditory information, and they provide inputs to all the major brainstem and midbrain auditory nuclei. The ventral region of the cochlear nucleus (the ventral cochlear nucleus) represents the beginning of the binaural pathway through its projections to the superior olivary complex. The synaptic circuitry of the ventral cochlear nucleus specializes in the precise and rapid representation of incoming signals from the cochlear afferents. The ventral cochlear nucleus has two main regions: the core or magnocellular region and the granular cell domain. The magnocellular region contains these main neuronal cell types: the bushy cells (spherical and globular) and the multipolar or stellate cells (T stellate and D stellate). Auditory nerve fibers are the major source of excitation to both bushy and stellate cells. The synaptic connectivity pattern of neural networks between the neurons in a brain region is an essential determinant of their role in information processing. This chapter concentrates on the connectivity and synaptic microcircuits, including the key molecular synaptic components that allow the principal cells (bushy and stellate cells) to accomplish their functions. In addition, putative aspects of experience-dependent plasticity and hearing loss are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, J. C. (1986). Neuronal morphology in the human cochlear nucleus. Archives of Otolaryngology—Head and Neck Surgery, 112(12), 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  • Aitkin, L. M., Dickhaus, H., Schult, W., & Zimmermann, M. (1978). External nucleus of inferior colliculus: Auditory and spinal somatosensory afferents and their interactions. Journal of Neurophysiology, 41(4), 837–847.

    Article  CAS  PubMed  Google Scholar 

  • Aitkin, L. M., Kenyon, C. E., & Philpott, P. (1981). The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. The Journal of Comparative Neurology, 196(1), 25–40.

    Article  CAS  PubMed  Google Scholar 

  • Alibardi, L. (1998a). Ultrastructural and immunocytochemical characterization of neurons in the rat ventral cochlear nucleus projecting to the inferior colliculus. Annals of Anatomy, 180(5), 415–426.

    Article  CAS  PubMed  Google Scholar 

  • Alibardi, L. (1998b). Ultrastructural and immunocytochemical characterization of commissural neurons in the ventral cochlear nucleus of the rat. Annals of Anatomy, 180(5), 427–438.

    Article  CAS  PubMed  Google Scholar 

  • Altschuler, R. A., Betz, H., Parakkal, M. H., Reeks, K. A., & Wenthold, R. J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research, 369(1–2), 316–320.

    Article  CAS  PubMed  Google Scholar 

  • Altschuler, R. A., Juiz, J. M., Shore, S. E., Bledsoe, S. C., Helfert, R. H., & Wenthold, R. J. (1993). Inhibitory amino acid synapses and pathways in the ventral cochlear nucleus. In M. A. Merchán, J. M. Juiz, D. A. Godfrey, & E. Mugnaini (Eds.), The mammalian cochlear nuclei: Organization and function (pp. 211–224). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Balschun, D., Manahan-Vaughan, D., Wagner, T., Behnisch, T., Reymann, K. G., & Wetzel, W. (1999). A specific role for group I mGluRs in hippocampal LTP and hippocampus-dependent spatial learning. Learning and Memory, 6(2), 138–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benson, T. E., & Brown, M. C. (2004). Postsynaptic targets of type II auditory nerve fibers in the cochlear nucleus. Journal of the Association for Research in Otolaryngology, 5(2), 111–125.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bilak, M. M., Bilak, S. R., & Morest, D. K. (1996). Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience, 75(4), 1075–1097.

    Article  CAS  PubMed  Google Scholar 

  • Bilak, S. R., & Morest, D. K. (1998). Differential expression of the metabotropic glutamate receptor mGluR1alpha by neurons and axons in the cochlear nucleus: In situ hybridization and immunohistochemistry. Synapse, 28(4), 251–270.

    Article  CAS  PubMed  Google Scholar 

  • Brenowitz, S., & Trussell, L. O. (2001). Minimizing synaptic depression by control of release probability. The Journal of Neuroscience, 21(6), 1857–1867.

    CAS  PubMed  Google Scholar 

  • Brown, M. C., Berglund, A. M., Kiang, N. Y., & Ryugo, D. K. (1988a). Central trajectories of type II spiral ganglion neurons. The Journal of Comparative Neurology, 278(4), 581–590.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. C., Liberman, M. C., Benson, T. E., & Ryugo, D. K. (1988b). Brainstem branches from olivocochlear axons in cats and rodents. The Journal of Comparative Neurology, 278(4), 591–603.

    Article  CAS  PubMed  Google Scholar 

  • Burian, M., & Goesttner, W. (1988). Projection of primary vestibular afferent fibres to the cochlear nucleus in the guinea pig. Neuroscience Letters, 84(1), 13–17.

    Article  CAS  PubMed  Google Scholar 

  • Caicedo, A., & Eybalin, M. (1999). Glutamate receptor phenotypes in the auditory brainstem and midbrain of the developing rat. European Journal of Neuroscience, 11(1), 51–74.

    Article  CAS  PubMed  Google Scholar 

  • Caicedo, A., & Herbert, H. (1993). Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. The Journal of Comparative Neurology, 328(3), 377–392.

    Article  CAS  PubMed  Google Scholar 

  • Campagnola, L., & Manis, P. B. (2014). A map of functional synaptic connectivity in the mouse anteroventral cochlear nucleus. The Journal of Neuroscience, 34(6), 2214–2230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos, M. L., de Cabo, C., Wisden, W., Juiz, J. M., & Merlo, D. (2001). Expression of GABA(A) receptor subunits in rat brainstem auditory pathways: Cochlear nuclei, superior olivary complex and nucleus of the lateral lemniscus. Neuroscience, 102(3), 625–638.

    Article  CAS  PubMed  Google Scholar 

  • Cant, N. B. (1981). The fine structure of two types of stellate cells in the anterior division of the anteroventral cochlear nucleus of the cat. Neuroscience, 6(12), 2643–2655.

    Article  CAS  PubMed  Google Scholar 

  • Cant, N. B. (1992). The cochlear nucleus: Neural types and their synaptic organization. In D. B. Webster, A. N. Popper, & R. R. Fay (Eds.), The mammalian auditory pathway: Neuroanatomy (pp. 66–116). New York: Springer.

    Chapter  Google Scholar 

  • Cant, N. B., & Benson, C. G. (2003). Parallel auditory pathways: Projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei. Brain Research Bulletin, 60(5–6), 457–474.

    Article  PubMed  Google Scholar 

  • Cant, N. B., & Morest, D. K. (1979). Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience, 4(12), 1909–1923.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X. J., & Oertel, D. (2010). Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity. Journal of Neurophysiology, 104, 2308–2230.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao, X. J., Shatadal, S., & Oertel, D. (2007). Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. Journal of Neurophysiology, 97(6), 3961–3975.

    Article  PubMed  Google Scholar 

  • Chanda, S., & Xu-Friedman, M. A. (2010). Neuromodulation by GABA converts a relay into a coincidence detector. Journal of Neurophysiology, 104(4), 2063–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda, S., & Xu-Friedman, M. A. (2011). Excitatory modulation in the cochlear nucleus through group I metabotropic glutamate receptor activation. The Journal of Neuroscience, 31(20), 7450–7455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson, C., Antunes, F., & Rubio, M. E. (2016). Conductive hearing loss has long-lasting structural and molecular effects on pre- and post-synaptic structures of the auditory nerve in the cochlear nucleus. The Journal of Neuroscience, 36(39), 10214–10227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curti, S., Hoge, G., Nagy, J. I., & Pereda, A. E. (2012). Synergy between electrical coupling and membrane properties promotes strong synchronization of neurons of the mesencephalic trigeminal nucleus. The Journal of Neuroscience, 32(13), 4341–4359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz, B., Jovanovic, S., Wielsch, B., Nerlich, J., Rübsamen, R., & Milenkovic, I. (2012). Purinergic modulation of neuronal activity in developing auditory brainstem. The Journal of Neuroscience, 32(31), 10699–10712.

    Article  CAS  PubMed  Google Scholar 

  • Doucet, J. R., & Ryugo, D. K. (2006). Structural and functional classes of multipolar cells in the ventral cochlear nucleus. The Anatomical Records Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288(4), 452–465.

    Google Scholar 

  • Eliades, S. J., & Wang, X. (2005). Dynamics of auditory-vocal interaction in monkey auditory cortex. Cerebral Cortex, 15(10), 1510–1523.

    Article  PubMed  Google Scholar 

  • Evans, E. F., & Zhao, W. (1993). Varieties of inhibition in the processing and control of processing in the mammalian cochlear nucleus. Progress in Brain Research, 97, 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Ferragamo, M., Golding, N. L., & Oertel, D. (1998). Synaptic inputs to stellate cells in the ventral cochlear nucleus. Journal of Neurophysiology, 79(1), 51–63.

    Article  CAS  PubMed  Google Scholar 

  • Fujino, K., & Oertel, D. (2001). Cholinergic modulation of stellate cells in the mammalian ventral cochlear nucleus. The Journal of Neuroscience, 21(18), 7372–7383.

    CAS  PubMed  Google Scholar 

  • Fujino, K., & Oertel, D. (2003). Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (1999). Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input. The Journal of Neuroscience, 19(20), 8721–8729.

    CAS  PubMed  Google Scholar 

  • Gardner, S. M., Trussell, L. O., & Oertel, D. (2001). Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. The Journal of Neuroscience, 21(18), 7428–7437.

    CAS  PubMed  Google Scholar 

  • Gibson, J. R., Beier, M., & Connors, B. W. (1999). Two networks of electrically coupled inhibitory neurons in neocortex. Nature, 402(6757), 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Gladding, C. M., Fitzjohn, S. M., & Molnár, E. (2009). Metabotropic glutamate receptor-mediated long-term depression: Molecular mechanisms. Pharmacological Reviews, 61(4), 395–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasgow, N. G., Siegler Retchless, B., & Johnson, J. W. (2015). Molecular bases of NMDA receptor subtype-dependent properties. Journal of Physiology, 593(1), 83–95.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D. A., Farms, W. B., Godfrey, T. G., Mikesell, N. L., & Liu, J. (2000). Amino acid concentrations in rat cochlear nucleus and superior olive. Hearing Research, 150(1–2), 189–205.

    Article  CAS  PubMed  Google Scholar 

  • Golding, N. L., & Oertel, D. (1996). Context-dependent synaptic action of glycinergic and GABAergic inputs in the dorsal cochlear nucleus. The Journal of Neuroscience, 16(7), 2208–2219.

    CAS  PubMed  Google Scholar 

  • Gómez-Nieto, R., & Rubio, M. E. (2009). A bushy cell network in the rat ventral cochlear nucleus. The Journal of Comparative Neurology, 516(4), 241–263.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Nieto, R., & Rubio, M. E. (2011). Ultrastructure, synaptic organization, and molecular components of bushy cell networks in the anteroventral cochlear nucleus of the rhesus monkey. Neuroscience, 179, 188–207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gómez-Nieto, R., Rubio, M. E., & López, D. E. (2008). Cholinergic input from the ventral nucleus of the trapezoid body to cochlear root neurons in rats. The Journal of Comparative Neurology, 506(3), 452–468.

    Article  PubMed  CAS  Google Scholar 

  • Grothe, B., Peck, M., & McAlpine, D. (2010). Mechanisms of sound localization in mammals. Physiological Reviews, 90(3), 983–1012.

    Article  CAS  PubMed  Google Scholar 

  • Gu, J. W., Hermann, B. S., Levine, R. A., & Melcher, J. R. (2012). Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. Journal of the Association for Research in Otolaryngology, 13(6), 819–833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haenggeli, C. A., Pongstaporn, T., Doucet, J. R., & Ryugo, D. K. (2005). Projections from the spinal trigeminal nucleus to the cochlear nucleus in the rat. The Journal of Comparative Neurology, 484(2), 191–205.

    Article  PubMed  Google Scholar 

  • Harty, H. T., & Manis, P. B. (1998). Kinetic analysis of glycine receptor currents in ventral cochlear nucleus. Journal of Neurophysiology, 79(4), 1891–1901.

    Article  CAS  PubMed  Google Scholar 

  • Häusser, M. (2001). Synaptic function: Dendritic democracy. Current Biology, 11(1), R10–R12.

    Article  PubMed  Google Scholar 

  • Heffner, H. E., & Hefner, R. S. (1985). Hearing in two cricetid rodents: Wood rat (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). Journal of Comparative Psychology, 99(3), 275–288.

    Article  CAS  PubMed  Google Scholar 

  • Huston, K. A., Durham, D., & Tucci, D. L. (2007). Consequences of unilateral hearing loss: Time dependent regulation of protein synthesis in auditory brainstem nuclei. Hearing Research, 233(1–2), 124–134.

    Google Scholar 

  • Isaacson, J. S., & Walmsley, B. (1995). Receptors underlying excitatory synaptic transmission in slices of the rat anteroventral cochlear nucleus. Journal of Neurophysiology, 73(3), 964–973.

    Article  CAS  PubMed  Google Scholar 

  • Itoh, K., Kamiya, H., Mitani, A., Yasui, Y., Takada, M., & Mizuno, N. (1987). Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Research, 400(1), 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, D., Magee, J. C., Colbert, C. M., & Cristie, B. R. (1996). Active properties of neuronal dendrites. Annual Review of Neuroscience, 19, 165–186.

    Article  CAS  PubMed  Google Scholar 

  • Joris, P. X., Carney, L. H., Smith, P. H., & Yin, T. C. (1994a). Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. Journal of Neurophysiology, 71(3), 1022–1036.

    Article  CAS  PubMed  Google Scholar 

  • Joris, P. X., & Smith, P. H. (2008). The volley theory and the spherical cell puzzle. Neuroscience, 154(1), 65–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joris, P. X., Smith, P. H., & Yin, T. C. (1994b). Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. Journal of Neurophysiology, 71(3), 1037–1051.

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic, S., Radulovic, T., Coddou, C., Dietz, B., Nerlich, J., Stojilkovic, S. S., et al. (2017). Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP. Journal of Physiology, 595(4), 1315–1337.

    Article  CAS  PubMed  Google Scholar 

  • Juiz, J. M., Helfert, R. H., Bonneau, J. M., Campos, M. L., & Altschuler, R. A. (1996). Distribution of glycine and GABA immunoreactivities in the cochlear nucleus: Quantitative patterns of putative inhibitory inputs on three cell types. Journal Für Hirnforschung, 37(4), 561–574.

    CAS  PubMed  Google Scholar 

  • Juiz, J. M., Helfert, R. H., Wenthold, R. J., De Blas, A. L., & Altschuler, R. A. (1989). Immunocytochemical localization of the GABAA/benzodiazepine receptor in the guinea pig cochlear nucleus: Evidence for receptor localization heterogeneity. Brain Research, 504(1), 173–179.

    Article  CAS  PubMed  Google Scholar 

  • Kevetter, G. A., & Parachio, A. A. (1989). Projections from the sacculus to the cochlear nuclei in the Mongolian gerbil. Brain, Behavior and Evolution, 34(4), 193–200.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J. J., Gross, S. J., Potashner, S. J., & Morest, D. K. (2004). Fine structure of long-term changes in the cochlear nucleus after acoustic overstimulation: Chronic degeneration and new growth of synaptic endings. The Journal of Neuroscience Research, 77(6), 817–828.

    Article  CAS  PubMed  Google Scholar 

  • Kirk, E. C., & Smith, D. W. (2003). Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. Journal of the Association for Research in Otolaryngology, 4, 445–465.

    Article  Google Scholar 

  • Kopp-Scheinpflug, C., Dehmel, S., Dörrscheidt, G. J., & Rübsamen, R. (2002). Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. The Journal of Neuroscience, 22(24), 11004–11018.

    CAS  PubMed  Google Scholar 

  • Kuhse, J., Betz, H., & Kirsch, J. (1995). The inhibitory glycine receptor: Architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Current Opinion in Neurobiology, 5(3), 318–323.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, N., DiCaprio, R. A., & Zook, J. M. (1991). Afferents to the medial nucleus of the trapezoid body and their collateral projections. The Journal of Comparative Neurology, 314(4), 684–706.

    Article  CAS  PubMed  Google Scholar 

  • Lauer, A. M., Connelly, C. J., Graham, H., & Ryugo, D. K. (2013). Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus. PLoS One, 8(8), e73308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence, J. J., & Trussell, L. O. (2000). Long-term specification of AMPA receptor properties after synapse formation. The Journal of Neuroscience, 20(13), 4864–4870.

    CAS  PubMed  Google Scholar 

  • Lee, D. J., Cahill, H. B., & Ryugo, D. K. (2003). Effects of congenital deafness in the cochlear nuclei of shaker-2 mice: An ultrastructural analysis of synapse morphology in the endbulbs of Held. Journal of Neurocytology, 32(3), 229–243.

    Article  PubMed  Google Scholar 

  • Liberman, M. C. (1991). Central projections of auditory-nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. The Journal of Comparative Neurology, 313(2), 240–258.

    Article  CAS  PubMed  Google Scholar 

  • Lomeli, H., Mosbacher, J., Melcher, T., Höger, T., Geiger, J. R., Kuner, T., et al. (1994). Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science, 266(5191), 1709–1713.

    Article  CAS  PubMed  Google Scholar 

  • Lorente de Nó, R. (1981). The primary acoustic nuclei. New York: Raven Press.

    Google Scholar 

  • Malosio, M. L., Marqueze-Pouey, B., Kuhse, J., & Betz, H. (1991). Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO Journal, 10(9), 2401–2409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manis, P. B., Xie, R., Wang, Y., Narrs, G. S., & Spirou, G. A. (2012). The endbulbs of Held. In L. O. Trussell, A. N. Popper, & R. R. Fay (Eds.), Synaptic mechanisms in the auditory system (pp. 61–93). New York: Springer.

    Chapter  Google Scholar 

  • Mildbrandt, J. C., & Caspary, D. M. (1995). Age-related reduction of [3H]strychnine binding sites in the cochlear nucleus of the Fischer 344 rat. Neuroscience, 67(3), 713–719.

    Article  Google Scholar 

  • Milenkovic, I., Rinke, I., Witte, M., Dietz, B., & Rübsamen, R. (2009). P2 receptor-mediated signaling in spherical bushy cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 102(3), 1821–1833.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. K., & Moore, R. Y. (1987). Glutamic acid decarboxylase-like immunoreactivity in brainstem auditory nuclei of the rat. The Journal of Comparative Neurology, 260, 157–174.

    Article  CAS  PubMed  Google Scholar 

  • Moore, J. K., & Osen, K. K. (1979). The cochlear nuclei in man. American Journal of Anatomy, 154(3), 393–418.

    Article  CAS  PubMed  Google Scholar 

  • Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P. H., & Ruppersberg, J. P. (1994). A molecular determinant for submillisecond desensitization in glutamate receptors. Science, 266(5187), 1059–1062.

    Article  CAS  PubMed  Google Scholar 

  • Needham, K., & Paolini, A. G. (2006). Neural timing, inhibition and the nature of stellate cell interaction in the ventral cochlear nucleus. Hearing Research, 216, 31–42.

    Article  PubMed  Google Scholar 

  • Ngodup, T., Goetz, J. A., McGuire, B. C., Sun, W., Lauer, A. M., & Xu-Friedman, M. A. (2015). Activity-dependent, homeostatic regulation of neurotransmitter release from auditory nerve fibers. Proceedings of the National Academy of Sciences of the United States of America, 112, 6479–6484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Neil, J. N., Limb, C. J., Baker, C. A., & Ryugo, D. K. (2010). Bilateral effects of unilateral cochlear implantation in congenitally deaf cats. The Journal of Comparative Neurology, 518(12), 2382–23404.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oertel, D., Bal, R., Gardner, S. M., Smith, P. H., & Joris, P. X. (2000). Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11773–11779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oertel, D., & Fujino, K. (2001). Role of biophysical specialization in cholinergic modulation in neurons of the ventral cochlear nuclei. Audiology and Neurootology, 6(4), 161–166.

    Article  CAS  Google Scholar 

  • Oertel, D., & Wickesberg, R. E. (1993). Glycinergic inhibition in the cochlear nuclei: Evidence for tuberculoventral neurons being glycinergic. In M. A. Merchan (Ed.), The mammalian cochlear nuclei: Organization and function (pp. 225–237). New York: Plenum Press.

    Chapter  Google Scholar 

  • Oertel, D., Wright, S., Ferragamo, M., & Bal, R. (2011). The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus. Hearing Research, 276(1–2), 61–69.

    Article  PubMed  Google Scholar 

  • Oertel, D., Wum, S. H., Garb, M. W., & Dizack, C. (1990). Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. The Journal of Comparative Neurology, 295(1), 136–154.

    Article  CAS  PubMed  Google Scholar 

  • Oleskevich, S., & Walmsley, B. (2002). Synaptic transmission in the auditory brainstem of normal and congenitally deaf mice. Journal of Physiology, 540(2), 447–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osen, K. K. (1969). Cytoarchitecture of the cochlear nuclei in the cat. The Journal of Comparative Neurology, 136(4), 453–484.

    Article  CAS  PubMed  Google Scholar 

  • Osen, K. K., Ottersen, O. P., & Storm-Mathisen, J. (1990). Colocalization of glycine-like and GABA-like immunoreactivities: A semiquantitative study of individual neurons in the dorsal cochlear nucleus of the cat. In O. P. Ottersen & J. Storm-Mathisen (Eds.), Glycine neurotransmission (pp. 417–451). New York: Wiley.

    Google Scholar 

  • Ostapoff, E. M., Benson, C. G., & Saint Marie, R. L. (1997). GABA- and glycine-immunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. The Journal of Comparative Neurology, 381(4), 500–512.

    Article  CAS  PubMed  Google Scholar 

  • Ostapoff, E. M., & Morest, D. K. (1991). Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: A quantitative study. The Journal of Comparative Neurology, 314(3), 598–613.

    Article  CAS  PubMed  Google Scholar 

  • Paolin, A. G., FitzGerald, J. V., Burkitt, A. N., & Clark, G. M. (2001). Temporal processing from the auditory nerve to the medial nucleus of the trapezoid body in the rat. Hearing Research, 159(1–2), 101–116.

    Article  Google Scholar 

  • Piechotta, K., Weth, F., Harvery, R. J., & Friauf, E. (2001). Localization of rat glycine receptor α1 and α 2 subunit transcripts in the developing auditory brainstem. The Journal of Comparative Neurology, 438(3), 336–352.

    Article  CAS  PubMed  Google Scholar 

  • Pliss, L., Yang, H., & Xu-Friedman, M. A. (2009). Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus. Journal of Neurophysiology, 102(5), 2627–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman, I. M., Zhang, S., & Trussell, L. O. (1994). Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. The Journal of Neuroscience, 14(8), 4998–5010.

    CAS  PubMed  Google Scholar 

  • Rash, J. E., Davidson, K. G. V., Kamasawa, N., Yasumura, T., Kamasawa, M., Zhang, C., et al. (2005). Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve, and olfactory bulb. Journal of Neurocytology, 34(3–5), 309–342.

    Google Scholar 

  • Rash, J. E., Olson, C. O., Davidson, K. G. V., Yasumura, T., Kamasawa, N., & Nagy, J. I. (2007a). Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience, 147(4), 938–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rash, J. E., Olson, C. O., Pouliot, W. A., Davidson, K. G. V., Yasumura, T., Furman, C. S., et al. (2007b). Connexin36, miniature neuronal gap junctions, and limited electrotonic coupling in rodent suprachiasmatic nucleus (SCN). Neuroscience, 149(2), 350–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravindranathan, A., Donevan, S. D., Sugden, S. G., Greig, A., Rao, M. S., & Parks, T. N. (2000). Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. Journal of Physiology, 523(3), 667–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter, E. R., & Liberman, M. C. (1995). Efferent-mediated protection from acoustic overexposure: Relation to slow effects of olivocochlear stimulation. Journal of Neurophysiology, 73(2), 506–514.

    Article  CAS  PubMed  Google Scholar 

  • Rhode, W. S., & Smith, P. H. (1986). Encoding timing and intensity in the ventral cochlear nucleus of the cat. Journal of Neurophysiology, 56(2), 261–286.

    Article  CAS  PubMed  Google Scholar 

  • Rich, A. W., Xie, R., & Manis, P. B. (2010). Hearing loss alters quantal release at cochlear nucleus stellate cells. Laryngoscope, 120(10), 2047–2053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter, E. A., Norris, B. E., Fullerton, B. C., Levine, R. A., & Kiang, N. Y. (1983). Is there a medial nucleus of the trapezoid body in humans? American Journal of Anatomy, 168(2), 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, A. R., & Oertel, D. (2006). Hyperpolarization-activated currents regulate excitability in stellate cells of the mammalian ventral cochlear nucleus. Journal of Neurophysiology, 95(1), 76–87.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, J. S., & Young, E. D. (1996). Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Auditory Neuroscience, 2, 47–62.

    Google Scholar 

  • Rothman, J. S., Young, E. D., & Manis, P. B. (1993). Convergence of auditory fibers onto bushy cells in the ventral cochlear nucleus: Implications of a computational model. Journal of Neurophysiology, 70(6), 2562–2583.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, M. E., Fukazawa, Y., Kamasawa, N., Clarkson, C., Molnár, E., & Shigemoto, R. (2014). Target- and input-dependent organization of AMPA and NMDA receptors in synaptic connections of the cochlear nucleus. The Journal of Comparative Neurology, 522(18), 4023–4042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, M. E., & Juiz, J. M. (2004). Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus. The Journal of Comparative Neurology, 477(3), 253–272.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, M. E., Matsui, K., Fukazawa, Y., Kamasawa, N., Harada, H., Itakura, M., et al. (2017). The number and distribution of AMPA receptor channels containing fast kinetic GluA3 and GluA4 subunits at auditory nerve synapses depend on the target cells. Brain Structure and Function, 222, 3375–3393. https://doi.org/10.1007/s00429-017-1408-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, M. E., & Nagy, J. (2015). Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neuroscience, 303, 604–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, M. E., & Wenthold, R. J. (1997). Glutamate receptors are selectively targeted to postsynaptic sites in neurons. Neuron, 18(6), 939–950.

    Article  CAS  PubMed  Google Scholar 

  • Rubio, M. E., & Wenthold, R. J. (1999). Differential subcellular distribution of glutamate receptors in neurons. The Journal of Neuroscience, 19(13), 5549–5562.

    CAS  PubMed  Google Scholar 

  • Ryugo, D. K. (2008). Projections of low spontaneous rate, high threshold auditory nerve fibers to the small cell cap of the cochlear nucleus in cats. Neuroscience, 154(1), 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo, D. K., Kretzmer, E. A., & Niparko, J. K. (2005). Restoration of auditory nerve synapses in cats by cochlear implants. Science, 310(5753), 1490–1492.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo, D. K., Pongstaporn, T., Huchton, D. M., & Niparko, J. K. (1997). Ultrastructural analysis of primary endings in deaf white cats: Morphologic alterations in endbulbs of Held. The Journal of Comparative Neurology, 385(2), 230–244.

    Article  CAS  PubMed  Google Scholar 

  • Ryugo, D. K., & Sento, S. (1991). Synaptic connections of the auditory nerve in cats: Relationship between endbulbs of Held and spherical bushy cells. The Journal of Comparative Neurology, 305(1), 35–48.

    Article  CAS  PubMed  Google Scholar 

  • Saint Marie, R. L., Morest, D. K., & Brandon, C. J. (1986). The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hearing Research, 42(1), 97–112.

    Article  Google Scholar 

  • Saldaña, E. (1993). Descending projections from the inferior colliculus to the cochlear nuclei in mammals. In M. A. Merchán, J. M. Juiz, D. A. Godfrey, & E. Mugnaini (Eds.), The mammalian cochlear nuclei: Organization and function (pp. 153–165). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Sato, K., Kuriyama, H., & Altschuler, R. A. (2000). Expression of glycine receptor subunit mRNAs in the rat cochlear nucleus. Hearing Research, 144(1–2), 47–52.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, G., Guthmann, A., Ruppersberg, J. P., & Herbert, H. (2001). Expression of AMPA receptor subunit flip/flop splice variants in the rat auditory brainstem and inferior colliculus. The Journal of Comparative Neurology, 430(2), 160–171.

    Article  CAS  PubMed  Google Scholar 

  • Schofield, B. R. (1994). Projections to the cochlear nuclei from principal cells in the medial nucleus of the trapezoid body in guinea pigs. The Journal of Comparative Neurology, 344(1), 83–100.

    Article  CAS  PubMed  Google Scholar 

  • Shore, S. E., Vass, Z., Wys, N. L., & Altschuler, R. A. (2000). Trigeminal ganglion innervates the auditory brainstem. The Journal of Comparative Neurology, 419(3), 271–285.

    Article  CAS  PubMed  Google Scholar 

  • Smith, P. H., & Rhode, W. S. (1987). Characterization of HRP-labeled globular bushy cells in the cat anteroventral cochlear nucleus. The Journal of Comparative Neurology, 266(3), 360–375.

    Article  CAS  PubMed  Google Scholar 

  • Sotelo, C., Gentschev, T., & Zamora, A. J. (1976). Gap junctions in ventral cochlear nucleus of the rat. A possible new example of electrotonic junctions in the mammalian central nervous system. Neuroscience, 1(1), 5–7.

    Article  CAS  PubMed  Google Scholar 

  • Spirou, G. A., Rager, J., & Manis, P. B. (2005). Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience, 136(3), 843–863.

    Article  CAS  PubMed  Google Scholar 

  • Spoendlin, H. (1985). Anatomy of cochlear innervation. American Journal of Otolaryngology, 8, 453–487.

    Article  Google Scholar 

  • Suneja, S. K., Benson, C. G., Gross, J., & Potashner, S. J. (1995). Evidence for glutamatergic projections from the cochlear nucleus to the superior olive and the ventral nucleus of the lateral lemniscus. Journal of Neurochemistry, 64(1), 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Tolbert, L. P., & Morest, D. K. (1982). The neuronal architecture of the anteroventral cochlear nucleus in the region of the cochlear nerve root: Golgi and Nissl methods. Neuroscience, 7(12), 3013–3030.

    Article  CAS  PubMed  Google Scholar 

  • Tolbert, L. P., Morest, D. K., & Yurgelun-Todd, D. A. (1982). The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: Horseradish peroxidase labeling of identified cell types. Neuroscience, 7(12), 3031–3052.

    Article  CAS  PubMed  Google Scholar 

  • Tucci, D. L., Cant, N. B., & Durham, D. (1999). Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope, 109(9), 1359–1371.

    Article  CAS  PubMed  Google Scholar 

  • Valdivia, O. (1971). Methods of fixation and the morphology of synaptic vesicles. The Journal of Comparative Neurology, 142(3), 257–273.

    Article  CAS  PubMed  Google Scholar 

  • Vogler, D. P., Roberston, D., & Mulders, W. H. A. M. (2011). Hyperactivity in the ventral cochlear nucleus after cochlear trauma. The Journal of Neuroscience, 31(18), 6639–6645.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Yin, G., Rogers, K., Miralles, C., De Blas, A. L., & Rubio, M. E. (2011). Monaural conductive hearing loss alters the general expression of the GluA3 AMPA and glycine receptor α1 subunits in bushy and fusiform cells of the cochlear nucleus. Neuroscience, 199, 438–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., & Manis, P. B. (2005). Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. Journal of Neurophysiology, 94(3), 1814–1824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., & Manis, P. B. (2008). Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. Journal of Neurophysiology, 100(3), 1255–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. X., Wenthold, R. J., Ottersen, O. P., & Petralia, R. S. (1998). Endbulb synapses in the anteroventral cochlear nucleus express specific subset of AMPA-type glutamate receptor subunits. The Journal of Neuroscience, 18(3), 1148–1160.

    CAS  PubMed  Google Scholar 

  • Waterlood, F. G., & Mugnaini, E. (1984). Cartwheel neurons of the dorsal cochlear nucleus: A Golgi-electron microscopic study in rat. The Journal of Comparative Neurology, 227(1), 136–157.

    Article  Google Scholar 

  • Weedman, D. L., Pongstaporn, T., & Ryugo, D. K. (1996). Ultrastructural study of the granule cell domain of the cochlear nucleus in rats: Mossy fiber endings and their targets. The Journal of Comparative Neurology, 369(3), 345–360.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, R. J., & Rustioni, A. (1989). Brainstem projections to the rat cuneate nucleus. The Journal of Comparative Neurology, 282(1), 142–156.

    Article  CAS  PubMed  Google Scholar 

  • Wenthold, R. J. (1987). Evidence for a glycinergic pathway connecting the two cochlear nuclei: An immunocytochemical and retrograde transport study. Brain Research, 415(1), 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Wenthold, R. J., & Gulley, R. L. (1977). Aspartic acid and glutamic acid levels in the cochlear nucleus after auditory nerve lesion. Brain Research, 138(1), 279–284.

    Article  Google Scholar 

  • Whiting, B., Moiseff, A., & Rubio, M. E. (2009). Cochlear nucleus neurons redistribute synaptic AMPA and glycine receptors in response to monaural conductive hearing loss. Neuroscience, 163(4), 1264–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickesberg, R. E., & Oertel, D. (1988). Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. The Journal of Comparative Neurology, 268(3), 389–399.

    Article  CAS  PubMed  Google Scholar 

  • Wickesberg, R. E., & Oertel, D. (1990). Delayed, frequency-specific inhibition in the cochlear nuclei of mice: A mechanism for monaural echo suppression. The Journal of Neuroscience, 10(6), 1762–1768.

    CAS  PubMed  Google Scholar 

  • Wu, S. H., & Oertel, D. (1986). Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. The Journal of Neuroscience, 6(9), 2691–2706.

    CAS  PubMed  Google Scholar 

  • Xie, R., & Manis, P. B. (2014). GABAergic and glycinergic inhibitory synaptic transmission in the ventral cochlear nucleus studied in VGAT channel rhodopsin-2 mice. Frontiers in Neural Circuits, 8, 84. https://doi.org/10.3389/fncir.2014.00084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, H., & Xu-Friedman, M. (2008). Relative roles of different mechanisms of depression at the mouse endbulb of Held. Journal of Neurophysiology, 99(5), 2510–2521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young, E. D., & Oertel, D. (2003). Cochlear nucleus. In G. M. Shepherd (Ed.), The synaptic organization of the brain (pp. 125–163). New York: Oxford University Press.

    Google Scholar 

  • Young, E. D., & Oertel, D. (2010). Cochlear nucleus. In G. M. Shepherd & S. Grillner (Eds.), Handbook of brain microcircuits (pp. 215–223). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Young, E. D., & Sachs, M. B. (2008). Auditory nerve inputs to cochlear nucleus neurons studied with cross-correlation. Neuroscience, 154(1), 127–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan, X., & Ryugo, D. K. (2007). Projections of the lateral reticular nucleus to the cochlear nucleus in rats. The Journal of Comparative Neurology, 504(5), 583–598.

    Article  PubMed  Google Scholar 

  • Zhao, Y., Rubio, M. E., & Tzounopoulos, T. (2011). Mechanisms underlying input-specific synaptic plasticity in the dorsal cochlear nucleus. Hearing Research, 279(1–2), 67–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, C., Shroff, H., & Shore, S. (2011). Cuneate and spinal trigeminal nucleus projections to the cochlear nucleus are differentially associated with vesicular glutamate transporter-2. Neuroscience, 176, 142–151.

    Article  CAS  Google Scholar 

  • Zhou, J., Nannapaneni, N., & Shore, S. (2007). Vesicular glutamate transporters 1 and 2 are differentially associated with auditory nerve and spinal trigeminal inputs to the cochlear nucleus. The Journal of Comparative Neurology, 500(4), 777–787.

    Article  CAS  PubMed  Google Scholar 

  • Zhuang, X., Sun, W., & Xu-Friedman, M. A. (2017). Changes in properties of auditory nerve synapses following conductive hearing loss. The Journal of Neuroscience, 37(2), 323–332.

    Article  CAS  PubMed  Google Scholar 

  • Zorumski, C. F., & Izumi, Y. (2012). NMDA receptors and metaplasticity: Mechanisms and possible roles in neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 36(3), 989–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zucker, R. S. (1989). Short-term synaptic plasticity. Annual Review of Neuroscience, 12, 13–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Support was provided by the National Institute for Deafness and Other Communication Disorders (grant DC013048).

Compliance with Ethics Requirements

Maria E. Rubio declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Rubio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rubio, M.E. (2018). Microcircuits of the Ventral Cochlear Nucleus. In: Oliver, D., Cant, N., Fay, R., Popper, A. (eds) The Mammalian Auditory Pathways. Springer Handbook of Auditory Research, vol 65. Springer, Cham. https://doi.org/10.1007/978-3-319-71798-2_3

Download citation

Publish with us

Policies and ethics