Skip to main content

Application of Statistical Methods to Predict Beach Inundation at the Polish Baltic Sea Coast

  • Chapter
  • First Online:
Interdisciplinary Approaches for Sustainable Development Goals

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

  • 1388 Accesses

Abstract

In coastal zones, interactions between oceans and lands are very dynamic. Coastal and flood protection has a great importance for the safety of people. One of the approaches to predict beach inundation is to use simple empirical equations which have been successfully adopted by the coastal engineering branch. This research is focused on the application of wave run-up formulas (R2) to predict beach inundation at the Polish Baltic Sea coast. Nine R2 formulas were tested in six cross-sections at the beaches in Międzyzdroje, Ustronie Morskie, Sarbinowo, Darłówko, Lubiatowo and Dębki. Sea level elevation from tide-gauges and wave conditions from WAM model were used. The range of temporary seal level was from −0.29 to 0.39 m above mean sea level elevation defined as −0.08 m in Kronsztadt-86 Ordnance Datum. Maximum wave height was about 2.63 m and wave period was between 2.01 and 7.63 s. The results showed one extreme wave run-up (R2) formula as percentage values which gave proper visual adjustment without overestimation and underestimation and statistically significant correlation (with 95% confidence level) in Sarbinowo (0.79), Lubiatowo (0.60) and Ustronie Morskie (0.49).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aniśkiewicz P, Benedyczak R, Furmańczyk K, Andrzejewski P (2016) Validation of empirical wave run-up formulas to the Polish Baltic Sea coast. J Coastal Res 75(sp1):243–247

    Article  Google Scholar 

  • Battjes JA (1974) Surf similarity. Coast Eng Proc 1(14):466–480

    Google Scholar 

  • Bugajny N, Furmańczyk K (2014) Dune coast changes caused by weak storm events in Miedzywodzie, Poland. J Coastal Res 70(sp1):211–216

    Article  Google Scholar 

  • Bugajny N, Furmańczyk K, Dudzińska-Nowak J, Paplińska-Swerpel B (2013) Modelling morphological changes of beach and dune induced by storm on the Southern Baltic coast using XBeach (case study: Dziwnow Spit). J Coastal Res 65(sp1):672–677

    Article  Google Scholar 

  • Bugajny N, Furmańczyk K, Dudzińska-Nowak J (2015) Application of XBeach to model a storm response on a sandy spit at the southern Baltic. Oceanol Hydrobiol Stud 44(4):552–562

    Article  Google Scholar 

  • Cabanes C, Cazenave A, Provost C (2001) Sea level rise during past 40 years determined from satellite and in situ observations. Science 294(5543):840–842

    Article  CAS  Google Scholar 

  • Church JA, White NJ (2006) A 20th century acceleration in global sea‐level rise. Geophys Res Lett 33(1)

    Google Scholar 

  • Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32(4–5):585–602

    Article  Google Scholar 

  • Cieślikiewicz W, Paplińska-Swerpel B (2008) A 44-year hindcast of wind wave fields over the Baltic Sea. Coast Eng 55(11):894–905

    Article  Google Scholar 

  • Díaz-Sánchez R, López-Gutiérrez JS, Lechuga A, Negro V (2014) Runup variability due to time dependence and stochasticity in the beach profiles: two extreme cases of the Spanish coast. J Coastal Res 70:1–6

    Article  Google Scholar 

  • Douglas BC (1991) Global sea level rise. J Geophys Res, Oceans 96(C4):6981–6992

    Article  Google Scholar 

  • Galvin CJ (1972) Wave breaking in shallow water. In: Waves on beaches and resulting sediment transport, pp 413–456

    Google Scholar 

  • Guza RT, Thornton EB (1984) Swash oscillations on a natural beach. J Geogr Res Oceans 87(NC1):483–491

    Article  Google Scholar 

  • Hedges TS, Mase H (2004) Modified Hunt’s equation incorporating wave setup. J Waterw Port Coast Ocean Eng 130(3):109–113

    Article  Google Scholar 

  • Holman RA, Sallenger AH Jr (1985) Setup and swash on a natural beach. J Geophys Res 90(C1):945–953

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York, p 996

    Google Scholar 

  • Iribarren CR, Nogales C (1949) Protection des ports. In: Proceedings XVIIth International Navigation Congress, Section II, Communication 4, Lisbon, pp 31–80

    Google Scholar 

  • Jones PD, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16(2):206–223

    Article  Google Scholar 

  • Łabuz TA (2013) Sposoby ochrony brzegów morskich i ich wpływ na środowisko przyrodnicze polskiego wybrzeża Bałtyku. WWF report, pp 24–109

    Google Scholar 

  • Leppäranta M (1981) An ice drift model for the Baltic Sea. Tellus 33(6):583–593

    Article  Google Scholar 

  • Leppäranta M, Myrberg K (2009) Physical oceanography of the Baltic Sea. Springer Science & Business Media

    Google Scholar 

  • Mase H (1989) Random wave runup height on gentle slope. J Waterw Port Coast Ocean Eng 115(5):649–661

    Article  Google Scholar 

  • McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urbanization 19(1):17–37

    Article  Google Scholar 

  • Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328(5985):1517–1520

    Google Scholar 

  • Nicholls RJ, Wong PP, Burkett V, Codignotto J, Hay J, McLean R, Ragoonaden S, Woodroffe CD, Abuodha PA, Arblaster J, Brown B (2007) Coastal systems and low-lying areas

    Google Scholar 

  • Nielsen P, Hanslow DJ (1991) Wave runup distributions on natural beaches. J Coastal Res 7(4):1139–1152

    Google Scholar 

  • Ortega-Sánchez M, Fachin S, Sancho F, Losada MA (2008) Relation between beachface morphology and wave climate at Trafalgar beach (Cádiz, Spain). Geomorphology 99(1):171–185

    Article  Google Scholar 

  • Paprotny D, Andrzejewski P, Terefenko P, Furmańczyk K (2014) Application of empirical wave run-up formulas to the Polish Baltic Sea coast. PLoS ONE 9(8):1–8

    Article  Google Scholar 

  • Rotnicki K (1995) The coastal zone—present, past and future. J Coastal Res 22:3–11 (Polish Coast, Past Present and Future. Quaternary Research Institute, Adam Mickiewicz University, Poznań)

    Google Scholar 

  • Ruggiero P, Komar PD, McDougal WG, Beach RA (1996) Extreme water levels, wave runup and coastal erosion. Coast Eng Proc 1(25):2793–2805

    Google Scholar 

  • Staniszewska M, Boniecka H, Gajda A (2014) Prace pogłębiarskie w polskiej strefie przybrzeżnej–aktualne problemy. Inżynieria Ekologiczna

    Google Scholar 

  • Stockdon HF, Holman RA, Howd PA, Sallenger AH (2006) Empirical parameterization of setup, swash, and runup. Coast Eng 53(7):573–588

    Article  Google Scholar 

  • van der Meer JW (1998) Wave run-up and overtopping. In: Pilarczyk KW (ed) Dikes and revetments: design, maintenance and safety assessment. AA Balkema, Rotterdam, pp 145–159

    Google Scholar 

  • Vousdoukas MI, Wziatek D, Almeida LP (2012) Coastal vulnerability assessment based on video wave run-up observations at a mesotidal, steep-sloped beach. Ocean Dyn 62(1):123–137

    Article  Google Scholar 

  • Williamson P (1992) Reducing uncertainties. Coastal connections. IGBP, Stockholm, pp 19–21

    Google Scholar 

  • Wróblewski A (1994) Analysis and long-term forecast of sea-levels along the Polish Baltic Sea coast. Part II. Annual mean sea-levels—forecast to the year 2100. Oceanologia 36:107–120

    Google Scholar 

  • Zeidler B, Wróblewski A, Miętus M, Dziadziuszko Z, Cyberski J (1995) Wind, wave, and storm surge regime at the Polish Baltic coast. J Coast Res (SI 22):3–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Aniśkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aniśkiewicz, P., Łonyszyn, P., Furmańczyk, K., Terefenko, P. (2018). Application of Statistical Methods to Predict Beach Inundation at the Polish Baltic Sea Coast. In: Zielinski, T., Sagan, I., Surosz, W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_7

Download citation

Publish with us

Policies and ethics