Spinocerebellar Ataxia Type 2

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1049)

Abstract

Spinocerebellar ataxia type 2 (SCA2) is autosomal dominantly inherited and caused by CAG repeat expansion in the ATXN2 gene. Because the CAG repeat expansion is localized to an encoded region of ATXN2, the result is an expanded polyglutamine (polyQ) tract in the ATXN2 protein. SCA2 is characterized by progressive ataxia, and slow saccades. No treatment for SCA2 exists. ATXN2 mutation causes gains of new or toxic functions for the ATXN2 protein, resulting in abnormally slow Purkinje cell (PC) firing frequency and ultimately PC loss. This chapter describes the characteristics of SCA2 patients briefly, and reviews ATXN2 molecular features and progress toward the identification of a treatment for SCA2.

Keywords

Spinocerebellar ataxia type 2 Ataxin-2 Neurodegeneration Cerebellum 

Notes

Acknowledgements

We thank Duong P. Huynh and Sharan Paul for editing the chapter. We thank Darren Ames and Lance Pflieger for assistance with transcriptome analysis computations.

Funding

This work was supported by the Carmen and Louis Warschaw Endowment Fund, the National Ataxia Foundation, grants R01NS33123, R56NS33123 and R37NS033123 from the National Institutes of Neurological Disorders and Stroke to SMP, the Noorda foundation to SMP, and grants RC4NS073009 and R21NS081182 to DRS and SMP. SMP received grant support from the Target ALS Foundation.

Conflict of Interest Statement

SMP is a consultant for Progenitor Life Sciences.

References

  1. 1.
    Geschwind DH, Perlman S, Figueroa CP, Treiman LJ, Pulst SM (1997) The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 60:842–850PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ashizawa T, Figueroa KP, Perlman SL, Gomez CM, Wilmot GR, Schmahmann JD et al (2013) Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J Rare Dis 8:177CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gwinn-Hardy K, Chen JY, Liu HC, Liu TY, Boss M, Seltzer W et al (2000) Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 55:800–805CrossRefPubMedGoogle Scholar
  4. 4.
    Elden AC, Kim HJ, Hart MP, Chen-Plotkin AS, Johnson BS, Fang X et al (2010) Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466:1069–1075CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Neuenschwander AG, Thai KK, Figueroa KP, Pulst SM (2014) Amyotrophic lateral sclerosis risk for spinocerebellar ataxia type 2 ATXN2 CAG repeat alleles: a meta-analysis. JAMA Neurol 71:1529–1534CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Farg MA, Soo KY, Warraich ST, Sundaramoorthy V, Blair IP, Atkin JD (2013) Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum Mol Genet 22:717–728CrossRefPubMedGoogle Scholar
  7. 7.
    Sellier C, Campanari ML, Julie Corbier C, Gaucherot A, Kolb-Cheynel I, Oulad-Abdelghani M et al (2016) Loss of C9ORF72 impairs autophagy and synergizes with polyQ Ataxin-2 to induce motor neuron dysfunction and cell death. EMBO JGoogle Scholar
  8. 8.
    Fischbeck KH, Pulst SM (2011) Amyotrophic lateral sclerosis and spinocerebellar ataxia 2. Neurology 76:2050–2051CrossRefPubMedGoogle Scholar
  9. 9.
    Wadia NH, Swami RK (1971) A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 94:359–374CrossRefPubMedGoogle Scholar
  10. 10.
    Pulst SM, Santos N, Wang D, Yang H, Huynh D, Velazquez L et al (2005) Spinocerebellar ataxia type 2: polyQ repeat variation in the CACNA1A calcium channel modifies age of onset. Brain 128:2297–2303CrossRefPubMedGoogle Scholar
  11. 11.
    Velazquez-Perez L, Rodriguez-Labrada R, Canales-Ochoa N, Montero JM, Sanchez-Cruz G, Aguilera-Rodriguez R et al (2014) Progression of early features of spinocerebellar ataxia type 2 in individuals at risk: a longitudinal study. Lancet Neurol 13:482–489CrossRefPubMedGoogle Scholar
  12. 12.
    Pulst SM, Nechiporuk A, Starkman S (1993) Anticipation in spinocerebellar ataxia type 2. Nat Genet 5:8–10CrossRefPubMedGoogle Scholar
  13. 13.
    Gispert S, Twells R, Orozco G, Brice A, Weber J, Heredero L et al (1993) Chromosomal assignment of the second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet 4:295–299CrossRefPubMedGoogle Scholar
  14. 14.
    Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14:269–276CrossRefPubMedGoogle Scholar
  15. 15.
    Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14:277–284CrossRefPubMedGoogle Scholar
  16. 16.
    Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM et al (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14:285–291CrossRefPubMedGoogle Scholar
  17. 17.
    Fernandez M, McClain ME, Martinez RA, Snow K, Lipe H, Ravits J et al (2000) Late-onset SCA2: 33 CAG repeats are sufficient to cause disease. Neurology 55:569–572CrossRefPubMedGoogle Scholar
  18. 18.
    Scoles DR, Pflieger LT, Thai KK, Hansen ST, Dansithong W, Pulst SM (2012) ETS1 regulates the expression of ATXN2. Hum Mol Genet 21:5048–5065CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huynh DP, Del Bigio MR, Ho DH, Pulst SM (1999) Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer’s disease and spinocerebellar ataxia 2. Ann Neurol 45:232–241CrossRefPubMedGoogle Scholar
  20. 20.
    Huynh DP, Figueroa K, Hoang N, Pulst SM (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26:44–50CrossRefPubMedGoogle Scholar
  21. 21.
    Koyano S, Uchihara T, Fujigasaki H, Nakamura A, Yagishita S, Iwabuchi K (1999) Neuronal intranuclear inclusions in spinocerebellar ataxia type 2: triple-labeling immunofluorescent study. Neurosci Lett 273:117–120CrossRefPubMedGoogle Scholar
  22. 22.
    Turnbull VJ, Storey E, Tarlac V, Walsh R, Stefani D, Clark R et al (2004) Different ataxin-2 antibodies display different immunoreactive profiles. Brain Res 1027:103–116CrossRefPubMedGoogle Scholar
  23. 23.
    Huynh DP, Yang HT, Vakharia H, Nguyen D, Pulst SM (2003) Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 12:1485–1496CrossRefPubMedGoogle Scholar
  24. 24.
    Aguiar J, Santurlidis S, Nowok J, Alexander C, Rudnicki D, Gispert S et al (1999) Identification of the physiological promoter for spinocerebellar ataxia 2 gene reveals a CpG island for promoter activity situated into the exon 1 of this gene and provides data about the origin of the nonmethylated state of these types of islands. Biochem Biophys Res Commun 254:315–318CrossRefPubMedGoogle Scholar
  25. 25.
    Shibata H, Huynh DP, Pulst SM (2000) A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet 9:1303–1313CrossRefPubMedGoogle Scholar
  26. 26.
    Ralser M, Albrecht M, Nonhoff U, Lengauer T, Lehrach H, Krobitsch S (2005) An integrative approach to gain insights into the cellular function of human ataxin-2. J Mol Biol 346:203–214CrossRefPubMedGoogle Scholar
  27. 27.
    Nonhoff U, Ralser M, Welzel F, Piccini I, Balzereit D, Yaspo ML et al (2007) Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol Biol Cell 18:1385–1396CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huynh DP, Nguyen DT, Pulst-Korenberg JB, Brice A, Pulst SM (2007) Parkin is an E3 ubiquitin-ligase for normal and mutant ataxin-2 and prevents ataxin-2-induced cell death. Exp Neurol 203:531–541CrossRefPubMedGoogle Scholar
  29. 29.
    Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP et al (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29:9148–9162CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dansithong W, Paul S, Figueroa KP, Rinehart MD, Wiest S, Pflieger LT et al (2015) Ataxin-2 regulates RGS8 translation in a new BAC-SCA2 transgenic mouse model. PLoS Genet 11:e1005182CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ralser M, Nonhoff U, Albrecht M, Lengauer T, Wanker EE, Lehrach H et al (2005) Ataxin-2 and huntingtin interact with endophilin-A complexes to function in plastin-associated pathways. Hum Mol Genet 14:2893–2909CrossRefPubMedGoogle Scholar
  32. 32.
    Nonis D, Schmidt MH, van de Loo S, Eich F, Dikic I, Nowock J et al (2008) Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cell Signal 20:1725–1739CrossRefPubMedGoogle Scholar
  33. 33.
    Hermann H, Fabrizio P, Raker VA, Foulaki K, Hornig H, Brahms H et al (1995) snRNP Sm proteins share two evolutionarily conserved sequence motifs which are involved in Sm protein-protein interactions. EMBO J 14:2076–2088PubMedPubMedCentralGoogle Scholar
  34. 34.
    Albrecht M, Lengauer T (2004) Survey on the PABC recognition motif PAM2. Biochem Biophys Res Commun 316:129–138CrossRefPubMedGoogle Scholar
  35. 35.
    Satterfield TF, Pallanck LJ (2006) Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes. Hum Mol Genet 15:2523–2532CrossRefPubMedGoogle Scholar
  36. 36.
    Lastres-Becker I, Nonis D, Eich F, Klinkenberg M, Gorospe M, Kotter P et al (2016) Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3 K/mTOR and is induced by starvation. Biochim Biophys Acta 1862:1558–1569CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nihei Y, Ito D, Suzuki N (2012) Roles of ataxin-2 in pathological cascades mediated by TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma (FUS). J Biol Chem 287:41310–41323CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Halbach MV, Stehning T, Damrath E, Jendrach M, Sen NE, Basak AN et al (2015) Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated. PLoS ONE 10:e0121089CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hartmann J, Henning HA, Konnerth A (2011) mGluR1/TRPC3-mediated synaptic transmission and calcium signaling in mammalian central neurons. Cold Spring Harb Perspect Biol 3Google Scholar
  40. 40.
    Soubeyran P, Kowanetz K, Szymkiewicz I, Langdon WY, Dikic I (2002) Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416:183–187CrossRefPubMedGoogle Scholar
  41. 41.
    Sittler A, Walter S, Wedemeyer N, Hasenbank R, Scherzinger E, Eickhoff H et al (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 2:427–436CrossRefPubMedGoogle Scholar
  42. 42.
    Qin ZH, Wang Y, Sapp E, Cuiffo B, Wanker E, Hayden MR et al (2004) Huntingtin bodies sequester vesicle-associated proteins by a polyproline-dependent interaction. J Neurosci 24:269–281CrossRefPubMedGoogle Scholar
  43. 43.
    Blokhuis AM, Koppers M, Groen EJ, van den Heuvel DM, Dini Modigliani S, Anink JJ et al (2016) Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathol 132:175–196CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    DeMille D, Badal BD, Evans JB, Mathis AD, Anderson JF, Grose JH (2015) PAS kinase is activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1 through the phosphorylation and activation of Pbp1. Mol Biol Cell 26:569–582CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Swisher KD, Parker R (2010) Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS ONE 5:e10006CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hansen ST, Meera P, Otis TS, Pulst SM (2013) Changes in Purkinje cell firing and gene expression precede behavioral pathology in a mouse model of SCA2. Hum Mol Genet 22:271–283CrossRefPubMedGoogle Scholar
  47. 47.
    Huynh DP, Maalouf M, Silva AJ, Schweizer FE, Pulst SM (2009) Dissociated fear and spatial learning in mice with deficiency of ataxin-2. PLoS ONE 4:e6235CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kiehl TR, Nechiporuk A, Figueroa KP, Keating MT, Huynh DP, Pulst SM (2006) Generation and characterization of Sca2 (ataxin-2) knockout mice. Biochem Biophys Res Commun 339:17–24CrossRefPubMedGoogle Scholar
  49. 49.
    Lastres-Becker I, Brodesser S, Lutjohann D, Azizov M, Buchmann J, Hintermann E et al (2008) Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice. Hum Mol Genet 17:1465–1481CrossRefPubMedGoogle Scholar
  50. 50.
    Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, Seifried C et al (2012) ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet 8:e1002920CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Aguiar J, Fernandez J, Aguilar A, Mendoza Y, Vazquez M, Suarez J et al (2006) Ubiquitous expression of human SCA2 gene under the regulation of the SCA2 self promoter cause specific Purkinje cell degeneration in transgenic mice. Neurosci Lett 392:202–206CrossRefPubMedGoogle Scholar
  52. 52.
    Alves-Cruzeiro JM, Mendonca L, Pereira de Almeida L, Nobrega C (2016) Motor dysfunctions and neuropathology in mouse models of spinocerebellar ataxia type 2: a comprehensive review. Front Neurosci 10:572CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Pflieger LT, Dansithong W, Paul S, Scoles DR, Figueroa KP, Meera P, Otis TS, Facelli JC, Pulst SM (2017) Gene co-expression network analysis for identifying modules and functionally enriched pathways in SCA2. Hum Mol Genet 26(16):3069–3080Google Scholar
  54. 54.
    Fittschen M, Lastres-Becker I, Halbach MV, Damrath E, Gispert S, Azizov M et al (2015) Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate. Neurogenetics 16:181–192CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G (2016) ATXN2 Knockout and CAG42-Knock-in cerebellum shows similarly dysregulated expression in calcium homeostasis pathway. CerebellumGoogle Scholar
  56. 56.
    Bushart DD, Murphy GG, Shakkottai VG (2016) Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 4:25CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bezprozvanny IB (2010) Calcium signaling and neurodegeneration. Acta Naturae 2:72–82PubMedPubMedCentralGoogle Scholar
  58. 58.
    van de Leemput J, Chandran J, Knight MA, Holtzclaw LA, Scholz S, Cookson MR et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Iwaki A, Kawano Y, Miura S, Shibata H, Matsuse D, Li W et al (2008) Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J Med Genet 45:32–35CrossRefPubMedGoogle Scholar
  60. 60.
    Meera P, Pulst S, Otis T (2017) A positive feedback loop linking enhanced mGluR function and basal calcium in spinocerebellar ataxia type 2. Elife 6. pii:e26377Google Scholar
  61. 61.
    Ragothaman M, Muthane U (2008) Homozygous SCA 2 mutations changes phenotype and hastens progression. Mov Disord 23:770–771CrossRefPubMedGoogle Scholar
  62. 62.
    Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66CrossRefPubMedGoogle Scholar
  63. 63.
    Boy J, Schmidt T, Wolburg H, Mack A, Nuber S, Bottcher M et al (2009) Reversibility of symptoms in a conditional mouse model of spinocerebellar ataxia type 3. Hum Mol Genet 18:4282–4295CrossRefPubMedGoogle Scholar
  64. 64.
    Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB et al (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861CrossRefPubMedGoogle Scholar
  65. 65.
    Oz G, Vollmers ML, Nelson CD, Shanley R, Eberly LE, Orr HT et al (2011) In vivo monitoring of recovery from neurodegeneration in conditional transgenic SCA1 mice. Exp Neurol 232:290–298CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT et al (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816–820CrossRefPubMedGoogle Scholar
  67. 67.
    Hache M, Swoboda KJ, Sethna N, Farrow-Gillespie A, Khandji A, Xia S et al (2016) Intrathecal injections in children with spinal muscular atrophy: nusinersen clinical trial experience. J Child NeurolGoogle Scholar
  68. 68.
    Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH et al (2013) An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol 12:435–442CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Rigo F, Seth PP, Bennett CF (2014) Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. Adv Exp Med Biol 825:303–352CrossRefPubMedGoogle Scholar
  70. 70.
    Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Ann Rev Pharmacol Toxicol 50:259–293CrossRefGoogle Scholar
  71. 71.
    Skotte NH, Southwell AL, Ostergaard ME, Carroll JB, Warby SC, Doty CN et al (2014) Allele-specific suppression of mutant Huntingtin using antisense oligonucleotides: providing a therapeutic option for all Huntington disease patients. PLoS ONE 9:e107434CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Ostergaard ME, Southwell AL, Kordasiewicz H, Watt AT, Skotte NH, Doty CN et al (2013) Rational design of antisense oligonucleotides targeting single nucleotide polymorphisms for potent and allele selective suppression of mutant Huntingtin in the CNS. Nucleic Acids Res 41:9634–9650CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    White JK, Auerbach W, Duyao MP, Vonsattel JP, Gusella JF, Joyner AL et al (1997) Huntingtin is required for neurogenesis and is not impaired by the Huntington’s disease CAG expansion. Nat Genet 17:404–410CrossRefPubMedGoogle Scholar
  74. 74.
    McBride JL, Pitzer MR, Boudreau RL, Dufour B, Hobbs T, Ojeda SR et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Boudreau RL, McBride JL, Martins I, Shen S, Xing Y, Carter BJ et al (2009) Nonallele-specific silencing of mutant and wild-type huntingtin demonstrates therapeutic efficacy in Huntington’s disease mice. Mol Ther 17:1053–1063CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Scoles DR, Meera P, Schneider MD, Paul S, Dansithong W, Figueroa KP, Hung G, Rigo F, Bennett CF, Otis TS, Pulst SM (2017) Antisense oligonucleotide therapy for spinocerebellar ataxia type 2. Nature 544(7650):362–366Google Scholar
  77. 77.
    Becker LA, Huang B, Bieri G, Ma R, Knowles DA, Jafar-Nejad P, Messing J, Kim HJ, Soriano A, Auburger G, Pulst SM, Taylor JP, Rigo F, Gitler AD (2017) Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 544(7650):367–371Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations