Skip to main content

Clustering of Trajectory Data Using Hierarchical Approaches

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 28))

Abstract

Large volume of spatiotemporal data as trajectories are generated from GPS enabled devices such as smartphones, cars, sensors, and social media. In this paper, we present a methodology for clustering of trajectories to identify patterns in vehicle movement. The trajectories are clustered using hierarchical method and similarity between trajectories are computed using Dynamic Time Warping (DTW) measure. We study the effects on clustering by varying the linkage methods used for clustering of trajectories. The clustering method generate clusters that are spatially similar and optimal results are obtained during the clustering process. The results are validated using Cophenetic correlation coefficient, Dunn, and Davies-Bouldin Index by varying the number of clusters. The results are tested for its efficiency using real world data sets. Experimental results demonstrate that hierarchical clustering using DTW measure can cluster trajectories efficiently.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mazimpaka, J.D., Timpf, S.: Trajectory data mining: a review of methods and applications. J. Spat. Inf. Sci. 61–99 (2016)

    Google Scholar 

  2. Zheng, Y.: Trajectory data mining: an overview. In: ACM Transactions on Intelligent Systems and Technology (TIST) (2015)

    Google Scholar 

  3. Praveen, V., Sivakumar, P.B.: Design of IoT systems and analytics in the context of smart city initiatives in India. Procedia Comput. Sci. 92, 583–588 (2016)

    Article  Google Scholar 

  4. Feng, Z., Zhu, Y.: A survey on trajectory data mining: techniques and applications. IEEE Access 2056–2067 (2016)

    Google Scholar 

  5. Lee, J.G., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. In: Proceedings of the VLDB Endowment, pp. 1081–1094 (2008)

    Google Scholar 

  6. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: Proceedings of 50th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 63–72 (1999)

    Google Scholar 

  7. Chih, H.C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24, 169–192 (2015)

    Article  Google Scholar 

  8. Gudmundsson, J., Andreas, T., Jan, V.: Of Motifs and Goals: Mining Trajectory Data, ACM SIGSPATIAL GIS ’12, pp. 129–138 (2012)

    Google Scholar 

  9. Kim, J., Mahmassani, H.S.: Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories. Transp. Res. C Emerg. Technol. 375–390 (2015)

    Google Scholar 

  10. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories. 18th International Conference on Data Engineering, pp. 673–684 (2002)

    Google Scholar 

  11. Wang, H., Su, H., Zheng, K., Sadiq, S., Zhou, X.: An effectiveness study on trajectory similarity measures. In: Proceedings of the Twenty-Fourth Australasian Database Conference, pp. 13–22 (2013)

    Google Scholar 

  12. Besse, P., Guillouet, B., Loubes, J.M., François, R.: Review and perspective for distance based trajectory clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 17(11), 3306–3317 (2016)

    Google Scholar 

  13. Zhao, Q., Shi, Y., Liu, Q., Fränti, P.: A grid-growing clustering algorithm for geo-spatial data. Pattern Recognit. Lett. 53, 77–84 (2015)

    Article  Google Scholar 

  14. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Can. Cartographer 10(2), 112–122 (1973)

    Article  Google Scholar 

  15. Zheng, Y., Zhou, X.: Computing with spatial trajectories. Springer, New York (2011)

    Google Scholar 

  16. Yuan, G., Sun, P., Zhao, J., Li, D., Wang, C.: A review of moving object trajectory clustering algorithms. Artif. Intell. Rev. 77, 123–144 (2017)

    Article  Google Scholar 

  17. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  18. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Elsevier, Amsterdam (2012)

    Google Scholar 

  19. Sabarish, B.A., Karthi, R., Gireeshkumar, T.: A survey of location prediction using trajectory mining. Artificial Intelligence and Evolutionary Algorithms in Engineering Systems Springer India, pp. 119–127 (2015)

    Google Scholar 

  20. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2), 107–145 (2011)

    Google Scholar 

  21. Sinan, S., Nurhan, D., Ismet, D.: Comparison of hierarchical cluster analysis methods by cophenetic correlation. J. Inequalities Appl. 2013(203), 1–8 (2013)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Sabarish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sabarish, B.A., Karthi, R., Gireeshkumar, T. (2018). Clustering of Trajectory Data Using Hierarchical Approaches. In: Hemanth, D., Smys, S. (eds) Computational Vision and Bio Inspired Computing . Lecture Notes in Computational Vision and Biomechanics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-71767-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71767-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71766-1

  • Online ISBN: 978-3-319-71767-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics