Skip to main content

Fruiting-Body Development in Ascomycetes

  • Chapter
  • First Online:
Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Fruiting bodies are multicellular structures that are developed during the sexual life cycle of filamentous ascomycetes and protect the products of meiosis. In this review, we will provide a general overview about the morphology and development of fruiting bodies. This includes an introduction into important model ascomycetes, which have extensively been studied at the molecular level. We will further mention environmental and endogenous factors that affect the development of complex fruiting bodies. Further, we will discuss regulatory networks such as signal transduction pathways, protein degradation mechanisms, as well as transcriptional regulators and chromatin modifiers. This review summarizes our mechanistic understanding of fruiting-body formation in filamentous ascomycetes, which is reminiscent of other complex eukaryotic developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118

    Article  CAS  PubMed  Google Scholar 

  • Ahmed YL, Gerke J, Park HS, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu JH, Braus GH, Ficner R (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 11:e1001750

    Article  PubMed  PubMed Central  Google Scholar 

  • Ait Benkhali J, Coppin E, Brun S, Peraza-Reyes L, Martin T, Dixelius C, Lazar N, van Tilbeurgh H, Debuchy R (2013) A network of HMG-box transcription factors regulates sexual cycle in the fungus Podospora anserina. PLoS Genet 9:e1003642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvaro CG, Thorner J (2016) Heterotrimeric G protein-coupled receptor signaling in yeast mating pheromone response. J Biol Chem 291:7788–7795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier JM, Quevillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collemare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Guldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuveglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Segurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun MH, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Dev Cell 41:10–22

    Article  CAS  PubMed  Google Scholar 

  • Araki Y, Ku W-C, Akioka M, May AI, Hayashi Y, Arisaka F, Ishihama Y, Ohsumi Y (2013) Atg38 is required for autophagy-specific phosphatidylinositol 3-kinase complex integrity. J Cell Biol 203:299–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aramayo R, Peleg Y, Addison R, Metzenberg R (1996) Asm-1+, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:991–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arratia-Quijada J, Sánchez O, Scazzocchio C, Aguirre J (2012) FlbD, a Myb transcription factor of Aspergillus nidulans, is uniquely involved in both asexual and sexual differentiation. Eukaryot Cell 11:1132–1142

    Google Scholar 

  • Balestrini R, Mainieri D, Soragni E, Garnero L, Rollino S, Viotti A, Ottonello S, Bonfante P (2000) Differential expression of chitin synthase III and IV mRNAs in ascomata of Tuber borchii Vittad. Fungal Genet Biol 31:219–232

    Article  CAS  PubMed  Google Scholar 

  • Barnett HL, Lilly VG (1947) The effects of biotin upon the formation and development of perithecia, asci and ascospores by Sordaria fimicola Ces and de Not. Am J Bot 34:196–204

    CAS  PubMed  Google Scholar 

  • Bartoszewska M, Kiel JAKW (2010) The role of macroautophagy in development of filamentous fungi. Antioxid Redox Signal 14:2271–2287

    Article  PubMed  CAS  Google Scholar 

  • Bayram O, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon N-J, Keller NP, Yu J-H, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    Article  CAS  PubMed  Google Scholar 

  • Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    Article  CAS  PubMed  Google Scholar 

  • Bayram Ö, Bayram ÖS, Ahmed YL, Maruyama JI, Valerius O, Rizzoli SO, Ficner R, Irniger S, Braus GH (2012) The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet 8:e1002816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazafkan H, Dattenböck C, Böhmdorfer S, Tisch D, Stappler E, Schmoll M (2015) Mating type-dependent partner sensing as mediated by VEL1 in Trichoderma reesei. Mol Microbiol 96:1103–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazafkan H, Dattenbock C, Stappler E, Beier S, Schmoll M (2017) Interrelationships of VEL1 and ENV1 in light response and development in Trichoderma reesei. PLoS One 12:e0175946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker K, Beer C, Freitag M, Kück U (2015) Genome-wide identification of target genes of a mating-type α-domain transcription factor reveals functions beyond sexual development. Mol Microbiol 96:1002–1022

    Article  CAS  PubMed  Google Scholar 

  • Beckmann EA, Köhler AM, Meister C, Christmann M, Draht OW, Rakebrandt N, Valerius O, Braus GH (2015) Integration of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly. Mol Microbiol 97:110–124

    Article  CAS  PubMed  Google Scholar 

  • Beier A, Teichert I, Krisp C, Wolters DA, Kück U (2016) Catalytic subunit 1 of protein phosphatase 2A is a subunit of the STRIPAK complex and governs fungal sexual development. MBio 7:e00870-00816

    Article  Google Scholar 

  • Bennett RJ, Turgeon BG (2016) Fungal sex: the ascomycota. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.FUNK-0005-2016

  • Bernhards Y, Pöggeler S (2011) The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 57:133–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Yu H, Mim C, Matouschek A (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat Rev Mol Cell Biol 15:122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R (2011) genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 6:e21476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang SC, Natvig DO, Borkovich KA (1999) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A 96:8034–8039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bistis GN (1981) Chemotrophic interactions between trichogynes and conidia of the opposite mating type in Neurospora crassa. Mycologia 73:959–975

    Article  Google Scholar 

  • Bistis GN (1983) Evidence for diffusible mating-type specific trichogyne attractants in Neurospora crassa. Exp Mycol 7:292–295

    Article  CAS  Google Scholar 

  • Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Newsl 50:17–19

    Google Scholar 

  • Bloemendal S, Lord KM, Rech C, Hoff B, Engh I, Read ND, Kück U (2010) A mutant defective in sexual development produces aseptate ascogonia. Eukaryot Cell 9:1856–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Pöggeler S, Kück U (2012) A homolog of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84:310–323

    Article  CAS  PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    Article  CAS  PubMed  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  CAS  PubMed  Google Scholar 

  • Böhm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kück U (2013) Sexual reproduction and mating-type-mediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci U S A 110:1476–1481

    Article  PubMed  PubMed Central  Google Scholar 

  • Böhm J, Dahlmann TA, Gümüser H, Kück U (2015) A MAT1-2 wild-type strain from Penicillium chrysogenum: functional mating-type locus characterization, genome sequencing and mating with an industrial penicillin-producing strain. Mol Microbiol 95:859–874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bok JW, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Keller NP (2005) LaeA, a regulator of morphogenetic fungal virulence factors. Eukaryot Cell 4:1574–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet C, Espagne E, Zickler D, Boisnard S, Bourdais A, Berteaux-Lecellier V (2006) The peroxisomal import proteins PEX2, PEX5 and PEX7 are differently involved in Podospora anserina sexual cycle. Mol Microbiol 62:157–169

    Article  CAS  PubMed  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N, Plamann M, Goodrich-Tanrikulu M, Schulte U, Mannhaupt G, Nargang FE, Radford A, Selitrennikoff C, Galagan JE, Dunlap JC, Loros JJ, Catcheside D, Inoue H, Aramayo R, Polymenis M, Selker EU, Sachs MS, Marzluf GA, Paulsen I, Davis R, Ebbole DJ, Zelter A, Kalkman ER, O’Rourke R, Bowring F, Yeadon J, Ishii C, Suzuki K, Sakai W, Pratt R (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bornstein G, Grossman C (2015) COP9-Signalosome deneddylase activity is enhanced by simultaneous neddylation: insights into the regulation of an enzymatic protein complex. Cell Div 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouhouche K, Zickler D, Debuchy R, Arnaise S (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braus GH, Irniger S, Bayram Ö (2010) Fungal development and the COP9 signalosome. Curr Opin Microbiol 13:672–676

    Article  CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    Article  CAS  PubMed  Google Scholar 

  • Brown LS, Dioumaev AK, Lanyi JK, Spudich EN, Spudich JL (2001) Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 276:32495–32505

    Article  CAS  PubMed  Google Scholar 

  • Brown NA, Dos Reis TF, Ries LN, Caldana C, Mah JH, Yu JH, Macdonald JM, Goldman GH (2015) G-protein coupled receptor-mediated nutrient sensing and developmental control in Aspergillus nidulans. Mol Microbiol 98:420–439

    Article  CAS  PubMed  Google Scholar 

  • Brun S, Malagnac F, Bidard F, Lalucque H, Silar P (2009) Functions and regulation of the Nox family in the filamentous fungus Podospora anserina: a new role in cellulose degradation. Mol Microbiol 74:480–496

    Article  CAS  PubMed  Google Scholar 

  • Buetow L, Huang DT (2016) Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 17:626–642

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Schwier EU, Nahlik K, Bayram Ö, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc Natl Acad Sci U S A 104:8089–8094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Zhou X, Zhou J, Niu C, Kang L, Sun X, Zhang Y (2010) Efficient strategy for enhancing aspergiolide A production by citrate feedings and its effects on sexual development and growth of marine-derived fungus Aspergillus glaucus. Bioresour Technol 101:6059–6068

    Article  CAS  PubMed  Google Scholar 

  • Callaghan AA (1962) Observations on perithecium production and spore discharge in Pleurage setosa. Trans Br Mycol Soc 45:249–254

    Article  Google Scholar 

  • Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano-Domínguez N, Alvarez-Delfín K, Hansberg W, Aguirre J (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7:1352–1361

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canovas D, Marcos JF, Marcos AT, Strauss J (2016) Nitric oxide in fungi: is there NO light at the end of the tunnel? Curr Genet 62:513–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlile MJ, Friend J (1956) Carotenoids and reproduction in Pyronema confluens. Nature 178:369–370

    Article  CAS  Google Scholar 

  • Carrillo AJ, Schacht P, Cabrera IE, Blahut J, Prudhomme L, Dietrich S, Bekman T, Mei J, Carrera C, Chen V, Clark I, Fierro G, Ganzen L, Orellana J, Wise S, Yang K, Zhong H, Borkovich KA (2017) Functional profiling of transcription factor genes in Neurospora crassa. G3 (Bethesda) 7(9):2945–2956. https://doi.org/10.1534/g3.117.043331

    Article  Google Scholar 

  • Casas-Flores S, Herrera-Estrella A (2016) The bright and dark side of fungal life. In: Druzhinina LS, Kubicek CP (eds) The Mycota IV. Environmental and microbial relationships, 3rd edn. Springer, Berlin, pp 41–77

    Chapter  Google Scholar 

  • Casselton LA (2002) Mate recognition in fungi. Heredity 88:142–147

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 107:16715–16720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CL, Kuo HC, Tung SY, Hsu PW, Wang CL, Seibel C, Schmoll M, Chen RS, Wang TF (2012) Blue light acts as a double-edged sword in regulating sexual development of Hypocrea jecorina (Trichoderma reesei). PLoS One 7:e44969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng P, Yang Y, Gardner KH, Liu Y (2002) PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora. Mol Cell Biol 22:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ (2014) Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 9:e110603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chona BL (1932) The effect of cultural conditions on the growth and sporulation of an organism belonging to the group species Aspergillus glaucus. Trans Br Mycol Soc 17:221–228

    Article  CAS  Google Scholar 

  • Christmann M, Schmaler T, Gordon C, Huang X, Bayram Ö, Schinke J, Stumpf S, Dubiel W, Braus GH (2013) Control of multicellular development by the physically interacting deneddylases DEN1/DenA and COP9 signalosome. PLoS Genet 9:e1003275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung D, Dellaire G (2015) The role of the COP9 signalosome and neddylation in DNA damage signaling and repair. Biomol Ther 5:2388–2416

    CAS  Google Scholar 

  • Chung D, Upadhyay S, Bomer B, Wilkinson HH, Ebbole DJ, Shaw BD (2015) Neurospora crassa ASM-1 complements the conidiation defect in a stuA mutant of Aspergillus nidulans. Mycologia 107:298–306

    Article  CAS  PubMed  Google Scholar 

  • Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Kaplan V, Livneh I, Avni N, Cohen-Rosenzweig C, Ciechanover A (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol 79:403–418

    Article  CAS  PubMed  Google Scholar 

  • Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, Litvinkova L, Weiss RL, Borkovich KA, Dunlap JC (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103:10352–10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppin E, Berteaux-Lecellier V, Bidard F, Brun S, Ruprich-Robert G, Espagne E, Aït-Benkhali J, Goarin A, Nesseir A, Planamente S, Debuchy R, Silar P (2012) Systematic deletion of homeobox genes in Podospora anserina uncovers their roles in shaping the fruiting body. PLoS One 7:e37488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czaja W, Miller KY, Miller BL (2011) Complex mechanisms regulate developmental expression of the matA (HMG) mating type gene in homothallic Aspergillus nidulans. Genetics 189:795–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czaja W, Miller KY, Skinner MK, Miller BL (2014) Structural and functional conservation of fungal MatA and human SRY sex-determining proteins. Nat Commun 5:5434

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    Article  PubMed  Google Scholar 

  • Das C, Tyler JK, Churchill ME (2010) The histone shuffle: histone chaperones in an energetic dance. Trends Biochem Sci 35:476–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta A, Fuller KK, Dunlap JC, Loros JJ (2016) Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 18:5–20

    Article  PubMed  Google Scholar 

  • Davis RH (1995) Genetics of Neurospora. In: Kück U (ed) The Mycota II. Genetics and biotechnology, 1st edn. Springer, Berlin, pp 3–33

    Chapter  Google Scholar 

  • De Souza CP, Hashmi SB, Osmani AH, Andrews P, Ringelberg CS, Dunlap JC, Osmani SA (2013a) Functional analysis of the Aspergillus nidulans kinome. PLoS One 8:e58008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Souza WR, Morais ER, Krohn NG, Savoldi M, Goldman MH, Rodrigues F, Caldana C, Semelka CT, Tikunov AP, Macdonald JM, Goldman GH (2013b) Identification of metabolic pathways influenced by the G-protein coupled receptors GprB and GprD in Aspergillus nidulans. PLoS One 8:e62088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debuchy R, Coppin E (1992) The mating types of Podospora anserina: functional analysis and sequence of the fertilization domains. Mol Gen Genet 233:113–121

    Article  CAS  PubMed  Google Scholar 

  • Debuchy R, Arnaise S, Lecellier G (1993) The mat- allele of Podospora anserina contains three regulatory genes required for the development of fertilized female organs. Mol Gen Genet 241:667–673

    Article  CAS  PubMed  Google Scholar 

  • Debuchy R, Berteaux-Lecellier V, Silar P (2010) Mating systems and sexual morphogenesis in ascomycetes. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 501–535

    Chapter  Google Scholar 

  • Degli-Innocenti F, Russo VEA (1984) Isolation of new white-collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol 159:757–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deka R, Ghosh A, Tamuli R, Borkovich KA (2016) Heterotrimeric G proteins. In: Hoffmeister D (ed) The Mycota III. Biochemistry and molecular biology, 3rd edn. Springer, Berlin, pp 119–144

    Chapter  Google Scholar 

  • Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M, Bredeweg EL, Ibarra O, Emerson JM, Karunarathna N, Lyubetskaya A, Azizi E, Hurley JM, Dunlap JC, Galagan JE, Freitag M, Sachs MS, Bell-Pedersen D (2017) The Neurospora transcription factor ADV-1 transduces light signals and temporal information to control rhythmic expression of genes involved in cell fusion. G3 (Bethesda) 7:129–142

    Article  Google Scholar 

  • Dementhon K, Saupe SJ (2005) DNA-binding specificity of the IDI-4 basic leucine zipper factor of Podospora anserina defined by systematic evolution of ligands by exponential enrichment (SELEX). Eukaryot Cell 4:476–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dementhon K, Saupe SJ, Clavé C (2004) Characterization of IDI-4, a bZIP transcription factor inducing autophagy and cell death in the fungus Podospora anserina. Mol Microbiol 53:1625–1640

    Article  CAS  PubMed  Google Scholar 

  • Deng F, Allen TD, Nuss DL (2007) Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 6:235–244

    Article  CAS  PubMed  Google Scholar 

  • Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleissner A, Valerius O, Seiler S (2013) HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 90:796–812

    Article  CAS  PubMed  Google Scholar 

  • Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S (2014) Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet 10:e1004762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, Kistler HC, JR X (2009) Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot Cell 8:867–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirschnabel DE, Nowrousian M, Cano-Dominguez N, Aguirre J, Teichert I, Kück U (2014) New insights into the roles of NADPH oxidases in sexual development and ascospore germination in Sordaria macrospora. Genetics 196:729–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doherty FJ, Dawson S, Mayer RJ (2002) The ubiquitin-proteasome pathway of intracellular proteolysis. Essays Biochem 38:51–63

    Article  CAS  PubMed  Google Scholar 

  • Doughan B, Rollins JA (2016) Characterization of MAT gene functions in the life cycle of Sclerotinia sclerotiorum reveals a lineage-specific MAT gene functioning in apothecium morphogenesis. Fungal Biol 120:1105–1117

    Article  CAS  PubMed  Google Scholar 

  • Draht OW, Busch S, Hoffman K, Braus-Stromeyer S, Helmstaedt K, Goldman GH, Braus GH (2007) Amino acid supply of Aspergillus. CRC Press, New York

    Google Scholar 

  • Droce A, Sorensen JL, Sondergaard TE, Rasmussen JJ, Lysoe E, Giese H (2017) PTR2 peptide transporters in Fusarium graminearum influence secondary metabolite production and sexual development. Fungal Biol 121:515–527

    Article  CAS  PubMed  Google Scholar 

  • Dyer PS, Kück U (2017) Sex and the imperfect fungi. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0043-2017

  • Dyer PS, O’Gorman CM (2011) A fungal sexual revolution: Aspergillus and Penicillium show the way. Curr Opin Microbiol 14:649–654

    Article  PubMed  Google Scholar 

  • Dyer PS, O’Gorman CM (2012) Sexual development and cryptic sexuality in fungi: insights from Aspergillus species. FEMS Microbiol Rev 36:165–192

    Article  CAS  PubMed  Google Scholar 

  • Dyer PS, Ingram DS, Johnstone K (1993) Evidence for the involvement of linoleic acid and other endogenous lipid factors in perithecial development of Nectria haematococca mating population IV. Mycol Res 97:485–496

    Article  CAS  Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    Article  CAS  PubMed  Google Scholar 

  • Ebersberger I, de Matos Simoes R, Kupczok A, Gube M, Kothe E, Voigt K, von Haeseler A (2012) A consistent phylogenetic backbone for the fungi. Mol Biol Evol 29:1319–1334

    Article  CAS  PubMed  Google Scholar 

  • Engh I, Nowrousian M, Kück U (2007) Regulation of melanin biosynthesis via the dihydroxynaphthalene pathway is dependent on sexual development in the ascomycete Sordaria macrospora. FEMS Microbiol Lett 275:62–70

    Article  CAS  PubMed  Google Scholar 

  • Esser K (1966) Die Phenoloxydasen des Ascomyceten Podospora anserina. III. Quantitative und Qualitative Enzymunterschiede nach Mutation an nicht gekoppelten Loci. Z Vererbungsl 97:327–344

    CAS  PubMed  Google Scholar 

  • Esser K (1982) Cryptogams. Cambridge University Press, Cambridge

    Google Scholar 

  • Esser K, Straub J (1958) Genetische Untersuchungen an Sordaria mcrospora Auersw., Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z Vererbungsl 89:729–746

    CAS  PubMed  Google Scholar 

  • Fajardo-Somera RA, Jöhnk B, Bayram O, Valerius O, Braus GH, Riquelme M (2015) Dissecting the function of the different chitin synthases in vegetative growth and sexual development in Neurospora crassa. Fungal Genet Biol 75:30–45

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Yu G, Liu Y, Zhang X, Liu J, Zhang Y, Rollins JA, Sun F, Pan H (2016) An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum. Mol Plant Pathol 18:963–975

    Article  PubMed  CAS  Google Scholar 

  • Faretra F, Antonacci E (1987) Production of apothecia of Botryotinia fuckeliana (de Bary) Whetz. under controlled environmental conditions. Phytopathol Mediterranea 26:29–35

    Google Scholar 

  • Feng B, Haas H, Marzluf GA (2000) ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development. Biochemistry 39:11065–11073

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, He D, Yao Z, Klionsky DJ (2014) The machinery of macroautophagy. Cell Res 24:24–41

    Article  CAS  PubMed  Google Scholar 

  • Ferreira AV, An Z, Metzenberg RL, Glass NL (1998) Characterization of mat A-2, mat A-3 and DmatAmating-type mutants of Neurospora crassa. Genetics 148:1069–1079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer R, Aguirre J, Herrera-Estrella A, Corrochano LM (2016) The complexity of fungal vision. Microbiol Spectr 4:1–22

    CAS  Google Scholar 

  • Fleissner A, Leeder AC, Roca MG, Read ND, Glass NL (2009) Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc Natl Acad Sci U S A 106:19387–19392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freitag M (2014) Fungal chromatin and its role in regulation of gene expression. In: Nowrousian M (ed) The Mycota XIII. Fungal genomics, 2nd edn. Springer, Berlin, pp 99–120

    Chapter  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    Article  CAS  PubMed  Google Scholar 

  • Froehlich AC, Chen CH, Belden WJ, Madeti C, Roenneberg T, Merrow M, Loros JJ, Dunlap JC (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9:738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu C, Iyer P, Herkal A, Abdullah J, Stout A, Free SJ (2011) Identification and characterization of genes required for cell-to-cell fusion in Neurospora crassa. Eukaryot Cell 10:1100–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gagne JM, Downes BP, Shiu S-H, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci 99:11519–11524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galgoczy DJ, Cassidy-Stone A, Llinas M, O’Rourke SM, Herskowitz I, DeRisi JL, Johnson AD (2004) Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101:18069–18074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Schöttker B (2017) Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget. 10.18632/oncotarget.17128.

    Google Scholar 

  • Garcia-Martinez J, Brunk M, Avalos J, Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 5:7798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge L, Baskaran S, Schekman R, Hurley JH (2014) The protein-vesicle network of autophagy. Curr Opin Cell Biol 29:18–24

    Article  CAS  PubMed  Google Scholar 

  • Geng F, Wenzel S, Tansey WP (2012) Ubiquitin and proteasomes in transcription. Annu Rev Biochem 81:177–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Z, Zhu W, Su H, Zhao Y, Zhang KQ, Yang J (2014) Recent advances in genes involved in secondary metabolite synthesis, hyphal development, energy metabolism and pathogenicity in Fusarium graminearum (teleomorph Gibberella zeae). Biotechnol Adv 32:390–402

    Article  CAS  PubMed  Google Scholar 

  • Genschik P, Marrocco K, Bach L, Noir S, Criqui M-C (2014) Selective protein degradation: a rheostat to modulate cell-cycle phase transitions. J Exp Bot 65:2603–2615

    Article  CAS  PubMed  Google Scholar 

  • Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98:8443–8455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerke J, Bayram Ö, Feussner K, Landesfeind M, Shelest E, Feussner I, Braus GH (2012) Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 78:8234–8244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesing S, Schindler D, Fränzel B, Wolters D, Nowrousian M (2012) The histone chaperone ASF1 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 84:748–765

    Article  CAS  PubMed  Google Scholar 

  • Glass NL, Grotelueschen J, Metzenberg RL (1990) Neurospora crassa A mating-type region. Proc Natl Acad Sci U S A 87:4912–4916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Rezende JA, Gomes-Alves AG, Menino JF, Coelho MA, Ludovico P, Gonçalves P, Sturme MHJ, Rodrigues F (2012) Functionality of the Paracoccidioides Mating α-Pheromone-Receptor System. PLoS One 7:e47033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green KA, Becker Y, Fitzsimons HL, Scott B (2016) An Epichloe festucae homologue of MOB3, a component of the STRIPAK complex, is required for the establishment of a mutualistic symbiotic interaction with Lolium perenne. Mol Plant Pathol 17:1480–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU, Ballario P (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hammond CM, Strømme CB, Huang H, Patel DJ, Groth A (2017) Histone chaperone networks shaping chromatin function. Nat Rev Mol Cell Biol 18:141–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han KH (2009) Molecular genetics of Emericella nidulans sexual development. Mycobiology 37:171–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Han KH, Han KY, JH Y, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

    Article  CAS  PubMed  Google Scholar 

  • Han KH, Lee DB, Kim JH, Kim MS, Han KY, Kim WS, Park YS, Kim HB, Han DM (2003) Environmental factors affecting development of Aspergillus nidulans. J Microbiol 41:34–40

    CAS  Google Scholar 

  • Harding RW, Melles S (1983) Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72:996–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnett MM, Pineda MA, Latré de Laté P, Eason RJ, Besteiro S, Harnett W, Langsley G (2017) From Christian de Duve to Yoshinori Ohsumi: more to autophagy than just dining at home. Biomed J 40:9–22

    Article  PubMed  Google Scholar 

  • He QY, Cheng P, Yang YH, Wang LX, Gardner KH, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    Article  CAS  PubMed  Google Scholar 

  • He Q, Cheng P, He Q, Liu Y (2005) The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev 19:1518–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He F, Zhang X, Mafurah JJ, Zhang M, Qian G, Wang R, Safdar A, Yang X, Liu F, Dou D (2016) The transcription factor VpCRZ1 is required for fruiting body formation and pathogenicity in Valsa pyri. Microb Pathog 95:101–110

    Article  CAS  PubMed  Google Scholar 

  • Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R (2015) Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 97:733–745

    Article  CAS  PubMed  Google Scholar 

  • Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Westermann M, Harting R, Grond S, Busch S, Braus GH (2011) Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 22:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hirsch HM (1954) Environmental factors influencing the differentiation of protoperithecia and their relation to tyrosinase and melanin formation in Neurospora crassa. Physiol Plant 7:72–97

    Article  CAS  Google Scholar 

  • Hoff B, Pöggeler S, Kück U (2008) Eighty years after its discovery, fleming’s penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann B, Wanke C, Lapaglia SK, Braus GH (2000) c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol Microbiol 37:28–41

    Article  CAS  PubMed  Google Scholar 

  • Hohmann S (2009) Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett 583:4025–4029

    Article  CAS  PubMed  Google Scholar 

  • Hurley J, Loros JJ, Dunlap JC (2015) Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol 551:29–52

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson EA, Glass NL (2010) Meiotic regulators Ndt80 and Ime2 have different roles in Saccharomyces and Neurospora. Genetics 185:1271–1282

    Article  CAS  Google Scholar 

  • Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148

    Article  CAS  PubMed  Google Scholar 

  • Hynes MJ, Murray SL (2010) ATP-citrate lyase is required for production of cytosolic acetyl coenzyme A and development in Aspergillus nidulans. Eukaryot Cell 9:1039–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynes MJ, Murray SL, Khew GS, Davis MA (2008) Genetic analysis of the role of peroxisomes in the utilization of acetate and fatty acids in Aspergillus nidulans. Genetics 178:1355–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Heitman J (2005) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15:R829–R832

    Article  CAS  PubMed  Google Scholar 

  • Idnurm A, Walton FJ, Floyd A, Heitman J (2008) Identification of the sex genes in an early diverged fungus. Nature 451:193–196

    Article  CAS  PubMed  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed  PubMed Central  Google Scholar 

  • Innocenti FD, Pohl U, Russo VEA (1983) Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem Photobiol 37:49–51

    Article  CAS  PubMed  Google Scholar 

  • Irniger S (2011) The Ime2 protein kinase family in fungi: more duties than just meiosis. Mol Microbiol 80:1–13

    Article  CAS  PubMed  Google Scholar 

  • Irniger S, Sarikaya-Bayram Ö, Bayram Ö (2016) Fungal MAP-kinase-mediated regulatory pathways. In: Hoffmeister D (ed) The Mycota III. Biochemistry and molecular biology, 3rd edn. Springer, Berlin, pp 97–117

    Chapter  Google Scholar 

  • Ivanova C, Baath JA, Seiboth B, Kubicek CP (2013) Systems analysis of lactose metabolism in Trichoderma reesei identifies a lactose permease that is essential for cellulase induction. PLoS One 8:e62631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The G alpha i homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer SV, Ramakrishnan M, Kasbekar DP (2009) Neurospora crassa fmf-1 encodes the homologue of the Schizosaccharomyces pombe Ste11p regulator of sexual development. J Genet 88:33–39

    Article  CAS  PubMed  Google Scholar 

  • Jöhnk B, Bayram Ö, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH (2016) SCF ubiquitin ligase F-box protein Fbx15 controls nuclear co-repressor localization, stress response and virulence of the human pathogen Aspergillus fumigatus. PLoS Pathog 12:e1005899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson AD (1995) Molecular mechanisms of cell-type determination in budding yeast. Curr Opin Genet Dev 5:552–558

    Article  CAS  PubMed  Google Scholar 

  • Jones SK Jr, Bennett RJ (2011) Fungal mating pheromones: choreographing the dating game. Fungal Genet Biol 48:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, Pan Z-Q, Huang L (2008) A targeted proteomic analysis of the ubiquitin-like modifier Nedd8 and associated proteins. J Proteome Res 7:1274–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkers W, Rep M (2009) Lessons from fungal F-box proteins. Eukaryot Cell 8:677–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F, Starr TL, Camp DG II, Smith RD, Glass NL (2014) HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 10:e1004783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonkers W, Fischer MS, Do HP, Starr TL, Glass NL (2016) Chemotropism and cell fusion in Neurospora crassa relies on the formation of distinct protein complexes by HAM-5 and a novel protein HAM-14. Genetics 203:319–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Josefsen L, Droce A, Sondergaard TE, Sørensen JL, Bormann J, Schäfer W, Giese H, Olsson S (2012) Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8:326–337

    Article  CAS  PubMed  Google Scholar 

  • Jung B, Park J, Son H, Lee YW, Seo YS, Lee J (2014) A putative transcription factor pcs1 positively regulates both conidiation and sexual reproduction in the cereal pathogen Fusarium graminearum. Plant Pathol J 30:236–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junttila MR, Li SP, Westermarck J (2007) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965

    Article  PubMed  CAS  Google Scholar 

  • Käfer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  PubMed Central  Google Scholar 

  • Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M (2016) Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassa. Biosci Biotechnol Biochem 80:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Kamerewerd J, Jansson M, Nowrousian M, Pöggeler S, Kück U (2008) Three alpha-subunits of heterotrimeric G proteins and an adenylyl cyclase have distinct roles in fruiting body development in the homothallic fungus Sordaria macrospora. Genetics 180:191–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang JY, Chun J, Jun SC, Han DM, Chae KS, Jahng KY (2013) The MpkB MAP kinase plays a role in autolysis and conidiation of Aspergillus nidulans. Fungal Genet Biol 61:42–49

    Article  CAS  PubMed  Google Scholar 

  • Kaur G, Sharma A, Guruprasad K, Pati PK (2014) Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 32:551–563

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    Article  CAS  PubMed  Google Scholar 

  • Kayano Y, Tanaka A, Akano F, Scott B, Takemoto D (2013) Differential roles of NADPH oxidases and associated regulators in polarized growth, conidiation and hyphal fusion in the symbiotic fungus Epichloe festucae. Fungal Genet Biol 56:87–97

    Article  CAS  PubMed  Google Scholar 

  • Kazmierczak P, Kim DH, Turina M, Van Alfen NK (2005) A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryot Cell 4:931–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemp HA, Sprague GF Jr (2003) Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 23:1750–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  CAS  PubMed  Google Scholar 

  • Keszthelyi A, Jeney A, Kerenyi Z, Mendes O, Waalwijk C, Hornok L (2007) Tagging target genes of the MAT-1-2-1 transcription factor in Fusarium verticillioides (Gibberella fujikuroi MP-A). Antonie Van Leeuwenhoek 91:373–391

    Article  CAS  PubMed  Google Scholar 

  • Khaminets A, Behl C, Dikic I (2016) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16

    Article  CAS  PubMed  Google Scholar 

  • Khan IA, Lu J-P, Liu X-H, Rehman A, Lin F-C (2012) Multifunction of autophagy-related genes in filamentous fungi. Microbiol Res 167:339–345

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 5:544–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Metzenberg RL, Nelson MA (2002a) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot Cell 1:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Kyu-Yong H, Kim KJ, Han DM, Jahng KY, Chae KS (2002b) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kim H-K, Lee T, Yun S-H (2008) A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet Biol 45:1188–1196

    Article  CAS  PubMed  Google Scholar 

  • Kim HR, Chae KS, Han KH, Han DM (2009) The nsdC gene encoding a putative C2H2-type transcription factor is a key activator of sexual development in Aspergillus nidulans. Genetics 182:771–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Wright SJ, Park G, Ouyang S, Krystofova S, Borkovich KA (2012) Roles for receptors, pheromones, G proteins, and mating type genes during sexual reproduction in Neurospora crassa. Genetics 190:1389–1404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW (2014) MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. PLoS One 9:e94359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H-K, Jo S-M, Kim G-Y, Kim D-W, Kim Y-K, Yun S-H (2015) A large-scale functional analysis of putative target genes of mating-type loci provides insight into the regulation of sexual development of the cereal pathogen Fusarium graminearum. PLoS Genet 11:e1005486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M, Ohsumi Y (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545

    Article  CAS  PubMed  Google Scholar 

  • Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Pöggeler S (2010) Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell 9:894–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH (2006) The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 61:76–88

    Article  CAS  PubMed  Google Scholar 

  • Kröber A, Etzrodt S, Bach M, Monod M, Kniemeyer O, Staib P, Brakhage AA (2017) The transcriptional regulators SteA and StuA contribute to keratin degradation and sexual reproduction of the dermatophyte Arthroderma benhamiae. Curr Genet 63:103–116

    Article  PubMed  CAS  Google Scholar 

  • Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein subunits GNG-1 and GNB-1 form a Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot Cell 4:365–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kück U (2005) A Sordaria macrospora mutant lacking the leu1 gene shows a developmental arrest during fruiting body formation. Mol Gen Genomics 274:307–315

    Article  CAS  Google Scholar 

  • Kück U, Pöggeler S (2009) Cryptic sex in fungi. Fungal Biol Rev 23:55–90

    Article  Google Scholar 

  • Kück U, Beier AM, Teichert I (2016) The composition and function of the striatin-interacting phosphatases and kinases (STRIPAK) complex in fungi. Fungal Genet Biol 90:31–38

    Article  PubMed  CAS  Google Scholar 

  • Kües U, James TY, Heitman J (2011) Mating type in basidiomycetes: unipolar, bipolar and tetrapolar. In: Pöggeler S, Wöstemeyer J (eds) The Mycota XIV. Evolution of fungi and fungal-like organisms, 1st edn. Springer, Heidelberg, pp 97–160

    Chapter  Google Scholar 

  • Kumar S, Yoshida Y, Noda M (1993) Cloning of a cDNA which encodes a novel ubiquitin-like protein. Biochem Biophys Res Commun 195:393–399

    Article  CAS  PubMed  Google Scholar 

  • Kwon NJ, Garzia A, Espeso EA, Ugalde U, JH Y (2010) FlbC is a putative nuclear C2H2 transcription factor regulating development in Aspergillus nidulans. Mol Microbiol 77:1203–1219

    Article  CAS  PubMed  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    Article  CAS  PubMed  Google Scholar 

  • Lara-Ortiz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    Article  CAS  PubMed  Google Scholar 

  • Lara-Rojas F, Sánchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80:436–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EK, Diehl JA (2014) SCFs in the new millennium. Oncogene 33:2011–2018

    Article  CAS  PubMed  Google Scholar 

  • Lee BY, Han SY, Choi HG, Kim JH, Han KH, Han DM (2005) Screening of growth- or development-related genes by using genomic library with inducible promoter in Aspergillus nidulans. J Microbiol 43:523–528

    CAS  PubMed  Google Scholar 

  • Lee SH, Lee S, Choi D, Lee YW, Yun SH (2006) Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43:295–310

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Leslie JF, Bowden RL (2008) Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot Cell 7:1211–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Han YK, Yun SH, Lee YW (2009a) Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae. Eukaryot Cell 8:1155–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Lee J, Lee S, Park EH, Kim KW, Kim MD, Yun SH, Lee YW (2009b) GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot Cell 8:116–127

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Son H, Lee J, Min K, Choi GJ, Kim JC, Lee YW (2011) Functional analyses of two acetyl coenzyme A synthetases in the ascomycete Gibberella zeae. Eukaryot Cell 10:1043–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee MK, Kwon NJ, Choi JM, Lee IS, Jung S, Yu JH (2014) NsdD is a key repressor of asexual development in Aspergillus nidulans. Genetics 197:159–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee MK, Kwon NJ, Lee IS, Jung S, Kim SC, Yu JH (2016) Negative regulation and developmental competence in Aspergillus. Sci Rep 6:28874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehneck R, Elleuche S, Pöggeler S (2014) The filamentous ascomycete Sordaria macrospora can survive in ambient air without carbonic anhydrases. Mol Microbiol 92:931–944

    Article  CAS  PubMed  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170:1091–1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007) Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61:423–452

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang C, Liu W, Wang G, Kang Z, Kistler HC, Xu JR (2011) The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol Plant-Microbe Interact 24:487–496

    Article  CAS  PubMed  Google Scholar 

  • Li W-w, Li J, Bao J-k (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136

    Article  CAS  PubMed  Google Scholar 

  • Lichius A, Lord KM (2014) Chemoattractive mechanisms in filamentous fungi. Open Mycol J 8:28–57

    Article  Google Scholar 

  • Lichius A, Lord KM, Jeffree CE, Oborny R, Boonyarungsrit P, Read ND (2012) Importance of MAP kinases during protoperithecial morphogenesis in Neurospora crassa. PLoS One 7:e42565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Son H, Lee J, Min K, Choi GJ, Kim JC, Lee YW (2011) A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae. PLoS One 6:e25586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW (2012) A putative transcription factor MYT2 regulates perithecium size in the ascomycete Gibberella zeae. PLoS One 7:e37859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linke R, Thallinger GG, Haarmann T, Eidner J, Schreiter M, Lorenz P, Seiboth B, Kubicek CP (2015) Restoration of female fertility in Trichoderma reesei QM6a provides the basis for inbreeding in this industrial cellulase producing fungus. Biotechnol Biofuels 8:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lisa-Santamaría P, Jiménez A, Revuelta JL (2012) The protein factor-arrest 11 (Far11) is essential for the toxicity of human caspase-10 in yeast and participates in the regulation of autophagy and the DNA damage signaling. J Biol Chem 287:29636–29647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu T-B, Liu X-H, Lu J-P, Zhang L, Min H, Lin F-C (2010) The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 6:74–85

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu JR (2016) Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Res 26:499–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord KM, Read ND (2011) Perithecium morphogenesis in Sordaria macrospora. Fungal Genet Biol 49:388–399

    Article  Google Scholar 

  • Lydeard JR, Schulman BA, Harper JW (2013) Building and remodelling Cullin–RING E3 ubiquitin ligases. EMBO Rep 14:1050–1061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lysoe E, Pasquali M, Breakspear A, Kistler HC (2011) The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol Plant-Microbe Interact 24:54–67

    Article  PubMed  CAS  Google Scholar 

  • Maerz S, Ziv C, Vogt N, Helmstaedt K, Cohen N, Gorovits R, Yarden O, Seiler S (2008) The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179:1313–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malagnac F, Lalucque H, Lepère G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982–997

    Article  CAS  PubMed  Google Scholar 

  • Marschall R, Tudzynski P (2016) Reactive oxygen species in development and infection processes. Semin Cell Dev Biol 57:138–146

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R (2010) Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 5:e15199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin SH, Wingfield BD, Wingfield MJ, Steenkamp ET (2011) Causes and consequences of variability in peptide mating pheromones of ascomycete fungi. Mol Biol Evol 28:1987–2003

    Article  CAS  PubMed  Google Scholar 

  • Masloff S, Pöggeler S, Kück U (1999) The pro1+ gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • May GS, Xue T, Kontoyiannis DP, Gustin MC (2005) Mitogen activated protein kinases of Aspergillus fumigatus. Med Mycol 43(Suppl 1):S83–S86

    Article  CAS  PubMed  Google Scholar 

  • Mayrhofer S, Pöggeler S (2005) Functional characterization of an alpha-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot Cell 4:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayrhofer S, Weber JM, Pöggeler S (2006) Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:1521–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCluskey K, Wiest AE, Grigoriev IV, Lipzen A, Martin J, Schackwitz W, Baker SE (2011) Rediscovery by whole genome sequencing: classical mutations and genome polymorphisms in Neurospora crassa. G3 (Bethesda) 1:303–316

    Article  CAS  Google Scholar 

  • Meister C, Kolog Gulko M, Köhler AM, Braus GH (2016) The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Curr Genet 62:129–136

    Article  CAS  PubMed  Google Scholar 

  • Mergner J, Schwechheimer C (2014) The NEDD8 modification pathway in plants. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00103

  • Miller KY, Wu J, Miller BL (1992) StuA is required for cell pattern formation in Aspergillus. Genes Dev 6:1770–1782

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Oikawa Y, Kimura Y, Kirisako H, Hirano H, Ohsumi Y, Nakatogawa H (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:359–362

    Article  CAS  PubMed  Google Scholar 

  • Molowitz R, Bahn M, Hock B (1976) The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by arginine and biotin: a two-factor analysis. Planta 128:143–148

    Article  CAS  PubMed  Google Scholar 

  • Montenegro-Montero A, Canessa P, Larrondo LF (2015) Around the fungal clock: recent advances in the molecular study of circadian clocks in Neurospora and other fungi. Adv Genet 92:107–184

    PubMed  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Moore-Landecker E (1992) Physiology and biochemistry of ascocarp induction and development. Mycol Res 96:705–716

    Article  CAS  Google Scholar 

  • Mousson F, Ochsenbein F, Mann C (2007) The histone chaperone Asf1 at the crossroads of chromatin and DNA checkpoint pathways. Chromosoma 116:79–93

    Article  CAS  PubMed  Google Scholar 

  • Murray SL, Hynes MJ (2010) Metabolic and developmental effects resulting from deletion of the citA gene encoding citrate synthase in Aspergillus nidulans. Eukaryot Cell 9:656–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahlik K, Dumkow M, Bayram Ö, Helmstaedt K, Busch S, Valerius O, Gerke J, Hoppert M, Schwier E, Opitz L, Westermann M, Grond S, Feussner K, Goebel C, Kaever A, Meinicke P, Feussner I, Braus GH (2010) The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol 78:964–979

    Article  CAS  PubMed  Google Scholar 

  • Naider F, Becker JM (2004) The α-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 25:1441–1463

    Article  CAS  PubMed  Google Scholar 

  • Nazarko TY, Ozeki K, Till A, Ramakrishnan G, Lotfi P, Yan M, Subramani S (2014) Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 204:541–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MA, Metzenberg RL (1992) Sexual development genes of Neurospora crassa. Genetics 132:149–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nolting N, Pöggeler S (2006a) A MADS box protein interacts with a mating-type protein and is required for fruiting body development in the homothallic ascomycete Sordaria macrospora. Eukaryot Cell 5:1043–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolting N, Pöggeler S (2006b) A STE12 homologue of the homothallic ascomycete Sordaria macrospora interacts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 62:853–868

    Article  CAS  PubMed  Google Scholar 

  • Nolting N, Bernhards Y, Pöggeler S (2009) SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet Biol 46:531–542

    Article  CAS  PubMed  Google Scholar 

  • Nordzieke S, Zobel T, Fränzel B, Wolters DA, Kück U, Teichert I (2015) A fungal SLMAP homolog plays a fundamental role in development and localizes to the nuclear envelope, ER, and mitochondria. Eukaryot Cell:345–358

    Google Scholar 

  • Nowrousian M (2014) Genomics and transcriptomics to analyze fruiting body development. In: Nowrousian M (ed) The Mycota XIII. Fungal genomics, 2nd edn. Springer, Berlin, pp 149–172

    Chapter  Google Scholar 

  • Nowrousian M, Masloff S, Pöggeler S, Kück U (1999) Cell differentiation during sexual development of the fungus Sordaria macrospora requires ATP citrate lyase activity. Mol Cell Biol 19:450–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowrousian M, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2005) Cross-species microarray hybridization to identify developmentally regulated genes in the filamentous fungus Sordaria macrospora. Mol Gen Genomics 273:137–149

    Article  CAS  Google Scholar 

  • Nowrousian M, Frank S, Koers S, Strauch P, Weitner T, Ringelberg C, Dunlap JC, Loros JJ, Kück U (2007) The novel ER membrane protein PRO41 is essential for sexual development in the filamentous fungus Sordaria macrospora. Mol Microbiol 64:923–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowrousian M, Teichert I, Masloff S, Kück U (2012) Whole-genome sequencing of Sordaria macrospora mutants identifies developmental genes. G3 (Bethesda) 2:261–270

    Article  CAS  Google Scholar 

  • Oda K, Hasunuma K (1997) Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa perithecia. Mol Gen Genet 256:593–601

    Article  CAS  PubMed  Google Scholar 

  • Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  CAS  PubMed  Google Scholar 

  • Oiartzabal-Arano E, Garzia A, Gorostidi A, Ugalde U, Espeso EA, Etxebeste O (2015) Beyond asexual development: modifications in the gene expression profile caused by the absence of the Aspergillus nidulans transcription factor FlbB. Genetics 199:1127–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363

    Article  CAS  PubMed  Google Scholar 

  • Ortiz CS, Shim WB (2013) The role of MADS-box transcription factors in secondary metabolism and sexual development in the maize pathogen Fusarium verticillioides. Microbiology 159:2259–2268

    Article  CAS  PubMed  Google Scholar 

  • Palmer GE, Askew DS, Williamson PR (2008) The diverse roles of autophagy in medically important fungi. Autophagy 4:982–988

    Article  CAS  PubMed  Google Scholar 

  • Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis J-P, Latgé J-P, Denning DW, Dyer PS (2005) Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15:1242–1248

    Article  CAS  PubMed  Google Scholar 

  • Paoletti M, Seymour FA, Alcocer MJC, Kaur N, Calvo AM, Archer DB, Dyer PS (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol 17:1384–1389

    Article  CAS  PubMed  Google Scholar 

  • Park G, Pan S, Borkovich KA (2008) Mitogen-activated protein kinase cascade required for regulation of development and secondary metabolism in Neurospora crassa. Eukaryot Cell 7:2113–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park G, Servin JA, Turner GE, Altamirano L, Colot HV, Collopy P, Litvinkova L, Li L, Jones CA, Diala FG, Dunlap JC, Borkovich KA (2011) Global analysis of serine-threonine protein kinase genes in Neurospora crassa. Eukaryot Cell 10:1553–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Nam TY, Han KH, Kim SC, Yu JH (2014) VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9:e89883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peraza-Reyes L, Berteaux-Lecellier V (2013) Peroxisomes and sexual development in fungi. Front Physiol 4:244. https://doi.org/10.3389/fphys.2013.00244

    Article  PubMed  PubMed Central  Google Scholar 

  • Peraza-Reyes L, Malagnac F (2016) Sexual development in fungi. In: Wendland J (ed) The Mycota I. Growth, differentiation and sexuality, 3rd edn. Springer, Berlin, pp 407–455

    Chapter  Google Scholar 

  • Peraza-Reyes L, Zickler D, Berteaux-Lecellier V (2008) The peroxisome RING-finger complex is required for meiocyte formation in the fungus Podospora anserina. Traffic 9:1998–2009

    Article  CAS  PubMed  Google Scholar 

  • Pierce NW, Lee JE, Liu X, Sweredoski Michael J, Graham Robert LJ, Larimore Elizabeth A, Rome M, Zheng N, Clurman Bruce E, Hess S, Shan S-o, Deshaies Raymond J (2013) Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins. Cell 153:206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M, Rigaut G, Séraphin B, Aasland R, Stewart AF (2001) The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 15:2991–3004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinan-Lucarré B, Paoletti M, Dementhon K, Coulary-Salin B, Clavé C (2003) Autophagy is induced during cell death by incompatibility and is essential for differentiation in the filamentous fungus Podospora anserina. Mol Microbiol 47:321–333

    Article  PubMed  Google Scholar 

  • Pinan-Lucarré B, Balguerie A, Clavé C (2005) Accelerated cell death in Podospora autophagy mutants. Eukaryot Cell 4:1765–1774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pöggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37:403–411

    Article  PubMed  Google Scholar 

  • Pöggeler S (2011) Pheromone receptors in filamentous ascomycetes. In: Pöggeler S, Wöstemeyer J (eds) The Mycota XIV. Evolution of fungi and fungal-like organism. Springer, Berlin, pp 73–96

    Chapter  Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17

    Article  PubMed  Google Scholar 

  • Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3:232–240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pöggeler S, Risch S, Kück U, Osiewacz HD (1997) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580

    PubMed  PubMed Central  Google Scholar 

  • Pöggeler S, Nowrousian M, Kück U (2006a) Fruiting body development in ascomycetes. In: Kües U, Fischer R (eds) The Mycota I. Growth, differentiation and sexuality, 2nd edn. Springer, Berlin, pp 325–355

    Chapter  Google Scholar 

  • Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U (2006b) Microarray and real time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Gen Genomics 275:492–503

    Article  CAS  Google Scholar 

  • Pollack JK, Harris SD, Marten MR (2009) Autophagy in filamentous fungi. Fungal Genet Biol 46:1–8

    Article  CAS  PubMed  Google Scholar 

  • Pracheil T, Liu Z (2013) Tiered assembly of the yeast Far3-7-8-9-10-11 complex at the endoplasmic reticulum. J Biol Chem 288:16986–16997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prade RA, Cruz AK, Terenzi HF (1984) Regulation of tyrosinase during the vegetative and sexual life-cycles of Neurospora crassa. Arch Microbiol 140:236–242

    Article  CAS  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    Article  CAS  PubMed  Google Scholar 

  • Rabut G, Peter M (2008) Function and regulation of protein neddylation. EMBO Rep 9:969–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragnelli AM, Pacioni G, Aimola P, Lanza B, Miranda M (1992) Truffle melanogenesis: correlation with reproductive differentiation and ascocarp ripening. Pigment Cell Res 5:205–212

    Article  CAS  PubMed  Google Scholar 

  • Rahikainen M, Pascual J, Alegre S, Durian G, Kangasjarvi S (2016) PP2A phosphatase as a regulator of ROS signaling in plants. Antioxidants (Basel) 5:pii: E8. doi:https://doi.org/10.3390/antiox5010008

  • Ramamoorthy V, Shantappa S, Dhingra S, Calvo AM (2012) veA-dependent RNA-pol II transcription elongation factor-like protein, RtfA, is associated with secondary metabolism and morphological development in Aspergillus nidulans. Mol Microbiol 85:795–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy V, Dhingra S, Kincaid A, Shantappa S, Feng X, Calvo AM (2013) The putative C2H2 transcription factor MtfA is a novel regulator of secondary metabolism and morphogenesis in Aspergillus nidulans. PLoS One 8:e74122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raudaskoski M, Kothe E (2010) Basidiomycete mating type genes and pheromone signaling. Eukaryot Cell 9:847–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Read ND, Goryachev AB, Lichius A (2012) The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biol Rev 26:1–11

    Article  Google Scholar 

  • Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richthammer C, Enseleit M, Sanchez-Leon E, März S, Heilig Y, Riquelme M, Seiler S (2012) RHO1 and RHO2 share partially overlapping functions in the regulation of cell wall integrity and hyphal polarity in Neurospora crassa. Mol Microbiol 85:716–733

    Article  CAS  PubMed  Google Scholar 

  • Roca MG, Weichert M, Siegmund U, Tudzynski P, Fleissner A (2012) Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biol 116:379–387

    Article  CAS  PubMed  Google Scholar 

  • Rockwell NC, Lagarias JC (2010) A brief history of phytochromes. ChemPhysChem 11:1172–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropars J, Lopez-Villavicencio M, Dupont J, Snirc A, Gillot G, Coton M, Jany JL, Coton E, Giraud T (2014) Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti. Evol Appl 7:433–441

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosen S, Yu JH, Adams TH (1999) The Aspergillus nidulans sfaD gene encodes a G protein beta subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sacristán-Reviriego A, Martin H, Molina M (2015) Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways. Fungal Genet Biol 77:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, Feussner I, Chae KS, Han DM, Han KH, Braus GH (2014) Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 29:406–420

    Article  CAS  PubMed  Google Scholar 

  • Sarikaya-Bayram Ö, Palmer JM, Keller N, Braus GH, Bayram Ö (2015) One Juliet and four Romeos: VeA and its methyltransferases. Front Microbiol 6:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Saupe S, Stenberg L, Shiu KT, Griffiths AJ, Glass NL (1996) The molecular nature of mutations in the mt A-1 gene of the Neurospora crassa A idiomorph and their relation to mating-type function. Mol Gen Genet 250:115–122

    CAS  PubMed  Google Scholar 

  • Scheckhuber CQ, Osiewacz HD (2008) Podospora anserina: a model organism to study mechanisms of healthy ageing. Mol Gen Genomics 280:365–374

    Article  CAS  Google Scholar 

  • Schindler D, Nowrousian M (2014) The polyketide synthase gene pks4 is essential for sexual development and regulates fruiting body morphology in Sordaria macrospora. Fungal Genet Biol 68:48–59

    Article  CAS  PubMed  Google Scholar 

  • Schinke J, Kolog Gulko M, Christmann M, Valerius O, Stumpf SK, Stirz M, Braus GH (2016) The DenA/DEN1 interacting phosphatase DipA controls septa positioning and phosphorylation-dependent stability of cytoplasmatic DenA/DEN1 during fungal development. PLoS Genet 12:e1005949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmoll M, Wang T-F (2016) Sexual development in Trichoderma. In: Wendland J (ed) The Mycota I. Growth, differentiation and sexuality, 3rd edn. Springer, Berlin, pp 457–474

    Chapter  Google Scholar 

  • Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A (2010a) Trichoderma in the light of day – physiology and development. Fungal Genet Biol 47:909–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoll M, Seibel C, Tisch D, Dorrer M, Kubicek CP (2010b) A novel class of peptide pheromone precursors in ascomycetous fungi. Mol Microbiol 77:1483–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmoll M, Dattenbock C, Carreras-Villasenor N, Mendoza-Mendoza A, Tisch D, Aleman MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete Jde J, Garcia-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernandez-Onate M, Kruszewska JS, Lawry R, Mora-Montes HM, Munoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Pilsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sanchez-Arreguin JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A (2016) The genomes of three uneven siblings: footprints of the lifestyles of three Trichoderma species. Microbiol Mol Biol Rev 80:205–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Sung GH, Lopez-Giraldez F, Townsend JP, Miadlikowska J, Hofstetter V, Robbertse B, Matheny PB, Kauff F, Wang Z, Gueidan C, Andrie RM, Trippe K, Ciufetti LM, Wynns A, Fraker E, Hodkinson BP, Bonito G, Groenewald JZ, Arzanlou M, de Hoog GS, Crous PW, Hewitt D, Pfister DH, Peterson K, Gryzenhout M, Wingfield MJ, Aptroot A, Suh SO, Blackwell M, Hillis DM, Griffith GW, Castlebury LA, Rossman AY, Lumbsch HT, Lucking R, Budel B, Rauhut A, Diederich P, Ertz D, Geiser DM, Hosaka K, Inderbitzin P, Kohlmeyer J, Volkmann-Kohlmeyer B, Mostert L, O’Donnell K, Sipman H, Rogers JD, Shoemaker RA, Sugiyama J, Summerbell RC, Untereiner W, Johnston PR, Stenroos S, Zuccaro A, Dyer PS, Crittenden PD, Cole MS, Hansen K, Trappe JM, Yahr R, Lutzoni F, Spatafora JW (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst Biol 58:224–239

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster A, Tisch D, Seidl-Seiboth V, Kubicek CP, Schmoll M (2012) Roles of protein kinase A and adenylate cyclase in light-modulated cellulase regulation in Trichoderma reesei. Appl Environ Microbiol 78:2168–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493

    Article  CAS  PubMed  Google Scholar 

  • Seibel C, Tisch D, Kubicek CP, Schmoll M (2012a) ENVOY is a major determinant in regulation of sexual development in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 11:885–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibel C, Tisch D, Kubicek CP, Schmoll M (2012b) The role of pheromone receptors for communication and mating in Hypocrea jecorina (Trichoderma reesei). Fungal Genet Biol 49:814–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl V, Seibel C, Kubicek CP, Schmoll M (2009) Sexual development in the industrial workhorse Trichoderma reesei. Proc Natl Acad Sci U S A 106:13909–13914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo JA, Han KH, JH Y (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623

    Article  CAS  PubMed  Google Scholar 

  • Seo JA, Han KH, JH Y (2005) Multiple roles of a heterotrimeric G-protein gamma-subunit in governing growth and development of Aspergillus nidulans. Genetics 171:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shelest E (2008) Transcription factors in fungi. FEMS Microbiol Lett 286:145–151

    Article  CAS  PubMed  Google Scholar 

  • Shen WC, Bobrowicz P, Ebbole DJ (1999) Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet Biol 27:253–263

    Article  CAS  PubMed  Google Scholar 

  • Shim WB, Sagaram US, Choi YE, So J, Wilkinson HH, Lee YW (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant-Microbe Interact 19:725–733

    Article  CAS  PubMed  Google Scholar 

  • Sikhakolli UR, Lopez-Giraldez F, Li N, Common R, Townsend JP, Trail F (2012) Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genet Biol 49:663–673

    Article  CAS  PubMed  Google Scholar 

  • Singh NS, Shao N, McLean JR, Sevugan M, Ren L, Chew TG, Bimbo A, Sharma R, Tang X, Gould KL, Balasubramanian MK (2011) SIN-inhibitory phosphatase complex promotes Cdc11p dephosphorylation and propagates SIN asymmetry in fission yeast. Curr Biol 21:1968–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Sancar G, Dekhang R, Sullivan CM, Li SJ, Tag AG, Sancar C, Bredeweg EL, Priest HD, McCormick RF, Thomas TL, Carrington JC, Stajich JE, Bell-Pedersen D, Brunner M, Freitag M (2010) Transcription factors in light and circadian clock signaling networks revealed by genomewide mapping of direct targets for Neurospora white collar complex. Eukaryot Cell 9:1549–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son H, Lee J, Park AR, Lee YW (2011a) ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol 48:408–417

    Article  CAS  PubMed  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK, Lee SH, Cho A, Lee S, Kim MG, Kim Y, Kim JE, Kim JC, Choi G, Yun SH, Lim JY, Kim M, Lee YH, Choi YD, Lee YW (2011b) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathog 7:e1002310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW (2012) Mitochondrial carnitine-dependent acetyl coenzyme A transport is required for normal sexual and asexual development of the ascomycete Gibberella zeae. Eukaryot Cell 11:1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son H, Park AR, Lim JY, Shin C, Lee YW (2017) Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genet 13:e1006595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sontag EM, Vonk WIM, Frydman J (2014) Sorting out the trash: the spatial nature of eukaryotic protein quality control. Curr Opin Cell Biol 26:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen JL, Akk E, Thrane U, Giese H, Sondergaard TE (2013) Production of fusarielins by Fusarium. Int J Food Microbiol 160:206–211

    Article  PubMed  CAS  Google Scholar 

  • Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 13:1620–1627

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staben C, Yanofsky C (1990) Neurospora crassa a mating-type region. Proc Natl Acad Sci U S A 87:4917–4921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley RE, Ragusa MJ, Hurley JH (2014) The beginning of the end: how scaffolds nucleate autophagosome biogenesis. Trends Cell Biol 24:73–81

    Article  CAS  PubMed  Google Scholar 

  • Steffens EK, Becker K, Krevet S, Teichert I, Kück U (2016) Transcription factor PRO1 targets genes encoding conserved components of fungal developmental signaling pathways. Mol Microbiol 102:792–809

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Choi GH, Nuss DL (2009) Hypovirus-responsive transcription factor gene pro1 of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection. Eukaryot Cell 8:262–270

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218

    Article  CAS  PubMed  Google Scholar 

  • Szewczyk E, Krappmann S (2010) Conserved regulators of mating are essential for Aspergillus fumigatus cleistothecium formation. Eukaryot Cell 9:774–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Hirayama K, Yonezawa H, Sato G, Toriyabe A, Kudo H, Hashimoto A, Matsumura M, Harada Y, Kurihara Y, Shirouzu T, Hosoya T (2015) Revision of the Massarineae (Pleosporales, Dothideomycetes). Stud Mycol 82:75–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert I, Nowrousian M (2011) Evolution of genes for secondary metabolism in fungi. In: Pöggeler S, Wöstemeyer J (eds) The Mycota XIV. Evolution of fungi and fungal-like organisms, 1st edn. Springer, Berlin, pp 231–255

    Chapter  Google Scholar 

  • Teichert I, Wolff G, Kück U, Nowrousian M (2012) Combining laser microdissection and RNA-seq to chart the transcriptional landscape of fungal development. BMC Genomics 13:511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teichert I, Nowrousian M, Pöggeler S, Kück U (2014a) The filamentous fungus Sordaria macrospora as a genetic model to study fruiting body development. Adv Genet 87:199–244

    CAS  PubMed  Google Scholar 

  • Teichert I, Steffens EK, Schnass N, Fränzel B, Krisp C, Wolters DA, Kück U (2014b) PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLoS Genet 10:e1004582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tisch D, Schmoll M (2013) Targets of light signalling in Trichoderma reesei. BMC Genomics 14:657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisch D, Kubicek CP, Schmoll M (2011) New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 48:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisch D, Schuster A, Schmoll M (2014) Crossroads between light response and nutrient signalling: ENV1 and PhLP1 act as mutual regulatory pair in Trichoderma reesei. BMC Genomics 15:425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Todd RB, Zhou M, Ohm RA, Leeggangers HA, Visser L, de Vries RP (2014) Prevalence of transcription factors in ascomycete and basidiomycete fungi. BMC Genomics 15:214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Traeger S, Nowrousian M (2015) Analysis of circadian rhythms in the basal filamentous ascomycete Pyronema confluens. G3 (Bethesda) 5:2061–2071

    Article  Google Scholar 

  • Traeger S, Altegoer F, Freitag M, Gabaldon T, Kempken F, Kumar A, Marcet-Houben M, Pöggeler S, Stajich JE, Nowrousian M (2013) The genome and development-dependent transcriptomes of Pyronema confluens: a window into fungal evolution. PLoS Genet 9:e1003820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsigiannis DI, Kowieski TM, Zarnowski R, Keller NP (2005) Three putative oxylipin biosynthetic genes integrate sexual and asexual development in Aspergillus nidulans. Microbiology 151:1809–1821

    Article  CAS  PubMed  Google Scholar 

  • Tüncher A, Reinke H, Martic G, Caruso ML, Brakhage AA (2004) A basic-region helix-loop-helix protein-encoding gene (devR) involved in the development of Aspergillus nidulans. Mol Microbiol 52:227–241

    Article  PubMed  CAS  Google Scholar 

  • Turgeon G, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5

    Article  CAS  PubMed  Google Scholar 

  • Turgeon BG, Bohlmann H, Ciuffetti LM, Christiansen SK, Yang G, Schäfer W, Yoder OC (1993) Cloning and analysis of the mating type genes from Cochliobolus heterostrophus. Mol Gen Genet 238:270–284

    CAS  PubMed  Google Scholar 

  • Turina M, Prodi A, Alfen NKV (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251

    Article  CAS  PubMed  Google Scholar 

  • Turrà D, El Ghalid M, Rossi F, Di Pietro A (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524

    Article  PubMed  CAS  Google Scholar 

  • Turrà D, Nordzieke D, Vitale S, El Ghalid M, Di Pietro A (2016) Hyphal chemotropism in fungal pathogenicity. Semin Cell Dev Biol 57:69–75

    Article  PubMed  CAS  Google Scholar 

  • Vallim MA, Miller KY, Miller BL (2000) Aspergillus SteA (sterile12-like) is a homeodomain-C2/H2-Zn+2 finger transcription factor required for sexual reproduction. Mol Microbiol 36:290–301

    Article  CAS  PubMed  Google Scholar 

  • Van Dijck P, Brown NA, Goldman GH, Rutherford J, Xue C, Van Zeebroeck G (2017) Nutrient sensing at the plasma membrane of fungal cells. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec.FUNK-0031-2016

  • Videira A, Duarte M (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta 1555:187–191

    Article  CAS  PubMed  Google Scholar 

  • Vienken K, Fischer R (2006) The Zn(II)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 61:544–554

    Article  CAS  PubMed  Google Scholar 

  • Vienken K, Scherer M, Fischer R (2005) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale S, Partida-Hanon A, Serrano S, Martínez-del-Pozo Á, Di Pietro A, Turrà D, Bruix M (2017) Structure-activity relationship of α mating pheromone from the fungal pathogen Fusarium oxysporum. J Biol Chem 292:3591–3602

    Article  CAS  PubMed  Google Scholar 

  • Vittal V, Stewart MD, Brzovic PS, Klevit RE (2015) Regulating the regulators: recent revelations in the control of E3 ubiquitin ligases. J Biol Chem 290:21244–21251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt O, Pöggeler S (2013a) Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 9:33–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt O, Pöggeler S (2013b) Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl Microbiol Biotechnol 97:9277–9290

    Article  CAS  PubMed  Google Scholar 

  • Voigt O, Herzog B, Jakobshagen A, Pöggeler S (2013) bZIP transcription factor SmJLB1 regulates autophagy-related genes Smatg8 and Smatg4 and is required for fruiting-body development and vegetative growth in Sordaria macrospora. Fungal Genet Biol 61:50–60

    Article  CAS  PubMed  Google Scholar 

  • von Zeska Kress MR, Harting R, Bayram Ö, Christmann M, Irmer H, Valerius O, Schinke J, Goldman GH, Braus GH (2012) The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Mol Microbiol 83:1162–1177

    Article  CAS  Google Scholar 

  • Voss TC, Hager GL (2014) Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat Rev Genet 15:69–81

    Article  CAS  PubMed  Google Scholar 

  • Wang C-L, Shim W-B, Shaw BD (2010a) Aspergillus nidulans striatin (StrA) mediates sexual development and localizes to the endoplasmic reticulum. Fungal Genet Biol 47:789–799

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hu Q, Chen H, Zhou Z, Li W, Wang Y, Li S, He Q (2010b) Role of individual subunits of the Neurospora crassa CSN complex in regulation of deneddylation and stability of cullin proteins. PLoS Genet 6:e1001232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, JR X (2011) A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol Plant-Microbe Interact 24:118–128

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu D, Pan H, Turgeon BG (2014a) Vel2 and Vos1 hold essential roles in ascospore and asexual spore development of the heterothallic maize pathogen Cochliobolus heterostrophus. Fungal Genet Biol 70:113–124

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Lopez-Giraldez F, Lehr N, Farré M, Common R, Trail F, Townsend JP (2014b) Global gene expression and focused knockout analysis reveals genes associated with fungal fruiting body development in Neurospora crassa. Eukaryot Cell 13:154–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Liu Y, Liu J, Zhang Y, Zhang X, Pan H (2016a) The Sclerotinia sclerotiorum FoxE2 gene is required for apothecial development. Phytopathology 106:484–490

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li N, Li JG, Dunlap JC, Trail F, Townsend JP (2016b) The fast-evolving phy-2 gene modulates sexual development in response to light in the model fungus Neurospora crassa. MBio 7

    Google Scholar 

  • Warner MH, Roinick KL, Arndt KM (2007) Rtf1 is a multifunctional component of the Paf1 complex that regulates gene expression by directing cotranscriptional histone modification. Mol Cell Biol 27:6103–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner A, Herzog B, Frey S, Pöggeler S (2016) Autophagy-associated protein SmATG12 is required for fruiting-body formation in the filamentous ascomycete Sordaria macrospora. PLoS One 11:e0157960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willer M, Hoffmann L, Styrkarsdottir U, Egel R, Davey J, Nielsen O (1995) Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe. Mol Cell Biol 15:4964–4970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wirsel S, Horwitz B, Yamaguchi K, Yoder OC, Turgeon BG (1998) Single mating type-specific genes and their 3’ UTRs control mating and fertility in Cochliobolus heterostrophus. Mol Gen Genet 259:272–281

    Article  CAS  PubMed  Google Scholar 

  • Wong KH, Hynes MJ, Todd RB, Davis MA (2009) Deletion and overexpression of the Aspergillus nidulans GATA factor AreB reveals unexpected pleiotropy. Microbiology 155:3868–3880

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Miller BL (1997) Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol 17:6191–6201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Oide S, Zhang N, Choi MY, Turgeon BG (2012) ChLae1 and ChVel1 regulate T-toxin production, virulence, oxidative stress response, and development of the maize pathogen Cochliobolus heterostrophus. PLoS Pathog 8:e1002542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamasaki A, Noda NN (2017) Structural biology of the Cvt pathway. J Mol Biol 429:531–542

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu H, Li G, Liu M, Yun Y, Wang C, Ma Z, JR X (2015) The MADS-box transcription factor FgMcm1 regulates cell identity and fungal development in Fusarium graminearum. Environ Microbiol 17:2762–2776

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Guo M, Yang H, Guo S, Dong C (2016) The blue-light receptor CmWC-1 mediates fruit body development and secondary metabolism in Cordyceps militaris. Appl Environ Microbiol 100:743–755

    CAS  Google Scholar 

  • Yao Z, Delorme-Axford E, Backues SK, Klionsky DJ (2015) Atg41/Icy2 regulates autophagosome formation. Autophagy 11:2288–2299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin W, Keller NP (2011) Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 49:329–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin WB, Reinke AW, Szilágyi M, Emri T, Chiang YM, Keating AE, Pócsi I, Wang CC, Keller NP (2013) bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology 159:77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin Z, Pascual C, Klionsky DJ (2016) Autophagy: machinery and regulation. Microb Cell 3:588–596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu CCC (1954) The culture and spore germination of Ascobolus with emphasis on A. magnificus. Am J Bot 41:21–30

    Article  Google Scholar 

  • Yu Z, Armant O, Fischer R (2016) Fungi use the SakA (HogA) pathway for phytochrome-dependent light signalling. Nat Microbiol 1:16019

    Article  CAS  PubMed  Google Scholar 

  • Yun SH, Yoder OC, Turgeon BG (2013) Structure and function of the mating-type locus in the homothallic ascomycete, Didymella zeae-maydis. J Microbiol 51:814–820

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Pugh BF (2011) High-resolution genome-wide mapping of the primary structure of chromatin. Cell 144:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Baasiri RA, van Alfen NK (1998) Viral repression of the fungal pheromone precursor gene expression. Mol Cell Biol 18:953–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li H, Qin G, He C, Li B, Tian S (2016) The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea. Sci Rep 6:33901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q, Hou R, Zhang J, Ma J, Wu Z, Wang GL, Wang C, JR X (2013) The MAT locus genes play different roles in sexual reproduction and pathogenesis in Fusarium graminearum. PLoS One 8:e66980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Wang Y, Cai G, He Q (2012) Neurospora COP9 signalosome integrity plays major roles for hyphal growth, conidial development, and circadian function. PLoS Genet 8:e1002712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors thank Gabriele Frenßen-Schenkel for preparing all figures and Hauke Kuhlmann and Marion Wolf for the technical help in preparing the text. We further acknowledge several colleagues, as mentioned in the text, who provided images for some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pöggeler, S., Nowrousian, M., Teichert, I., Beier, A., Kück, U. (2018). Fruiting-Body Development in Ascomycetes. In: Anke, T., Schüffler, A. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-71740-1_1

Download citation

Publish with us

Policies and ethics