Energy Efficiency in Wireless Multimedia Sensor Networking: Architecture, Management and Security

  • Erkki HarjulaEmail author
  • Tenager Mekonnen
  • Miika Komu
  • Pawani Porambage
  • Tero Kauppinen
  • Jimmy Kjällman
  • Mika Ylianttila
Part of the Computer Communications and Networks book series (CCN)


Wireless multimedia sensor network (WMSN) is a recently emerged concept of interconnected devices that are able to capture and deliver multimedia content. In contrast to traditional wireless sensor networks (WSN), the provided content may include video and audio streams and still images in addition to traditional scalar data such as temperature, humidity or light intensity. One of the core requirements for WSNs is energy efficiency: for maintenance reasons, the battery life must be long enough to provide feasible maintenance interval, rather months or years than days or weeks. The requirement is elaborated in WMSNs where video and audio capturing nodes inherently consume more energy than traditional scalar sensor nodes while the battery life requirements remain high. However, current technology base of video and audio surveillance does not enable sufficient energy-saving features to support ultra-low-energy multimedia sensor networking. In this chapter, we present a set of optimization methods to make WMSNs more energy efficient. The methods include energy-efficient hardware architectures combined with energy-optimized network topology management, lightweight virtualization and lightweight security solutions. The optimization methods are evaluated using real-life prototype implementations. The results provide an insight into effective methods for implementing energy-efficient WMSN.



This work was supported by TEKES and by the European Celtic-Plus Project CONVINcE, which was partially funded by Finland, France, Sweden and Turkey.


  1. 1.
    Porambage P, Schmitt C, Kumar P, Gurtov A, Ylianttila M (2014) PAuthKey: a pervasive authentication protocol and key establishment scheme for wireless sensor networks in distributed IoT applications. Int J Distrib Sens Netw 10(7)Google Scholar
  2. 2.
    Akyildiz IF, Melodia T, Chowdhury KR (2007) A survey on wireless multimedia sensor networks. Comput Netw 51(4):921–960CrossRefGoogle Scholar
  3. 3.
    Aasha Nandhini S, Radha S, Kishore R (2017) Efficient compressed sensing based object detection system for video surveillance application in WMSN. Multimed Tools Appl 60(C):175–192Google Scholar
  4. 4.
    Margi CB, Petkov V, Obraczka K, Manduchi R (2006) Characterizing energy consumption in a visual sensor network testbed. In: 2nd international conference Testbeds and research infrastructures for the development of networks and communities, Barcelona, Spain, 1–3 March 2006Google Scholar
  5. 5.
    Garcia-Sanchez AJ, Garcia-Sanchez F, Garcia-Haro J (2011) Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Comput Electron Agric 75(2):288–303CrossRefGoogle Scholar
  6. 6.
    Misra S, Mali G, Mondal A (2015) Distributed topology management for wireless multimedia sensor networks: exploiting connectivity and cooperation. Int J Commun Syst 28(7):1367–1386CrossRefGoogle Scholar
  7. 7.
    Hossain M, Ahmed D (2012) Virtual Caregiver: an ambient-aware elderly monitoring system. IEEE Trans Inf Technol Biomed 16(6):1024–1031CrossRefGoogle Scholar
  8. 8.
    Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376CrossRefGoogle Scholar
  9. 9.
    Prabhu B, Gajendran E (2016) An investigation on remote controlled tank using sensors for defense applications. Int J Innov Sci Eng 3:6pGoogle Scholar
  10. 10.
  11. 11.
    Chiasserini CF, Magli E (2012) Energy consumption and image quality in wireless video-surveillance networks. In: 13th IEEE international symposium on personal, indoor and mobile radio communications, Lisbon, Portugal, 15–18 September 2002Google Scholar
  12. 12.
    Yang M, Wang D, Bourbakis N (2013) Optimization of power allocation in multimedia wireless sensor networks. Int J Monit Surveill Technol Res 1(1):13Google Scholar
  13. 13.
    Zhang Y, Shakhsheer Y, Barth A, Powell HC, Ridenour SA, Hanson MA, Lach J, Calhoun BH (2011) Energy efficient design for body sensor nodes. Low Power Electron Appl 1(1):109–130CrossRefGoogle Scholar
  14. 14.
    Harjula E (2016) Energy-efficient peer-to-peer networking for constrained-capacity mobile environments. Doctoral dissertation, University of Oulu, Acta Universitatis OuluensisGoogle Scholar
  15. 15.
    Rault T, Bouabdallah A, Challal Y (2014) energy efficiency in wireless sensor networks: a top-down survey. Comput Netw 67:104–122CrossRefGoogle Scholar
  16. 16.
    Bhatt R, Datta R (2016) A two-tier strategy for priority based critical event surveillance with wireless multimedia sensors. Wirel Netw 22(1):267–284CrossRefGoogle Scholar
  17. 17.
    Morabito R (2017) Virtualization on internet of things edge devices with container technologies: a performance evaluation. IEEE Access 5:8835–8850CrossRefGoogle Scholar
  18. 18.
    Celesti D, Mulfari M, Fazio M, Villari M, Puliafito A (2016) Exploring container virtualization in IoT clouds. In: IEEE international conference on smart computing, St. Louis, MO, USA, 18–20 May 2017Google Scholar
  19. 19.
    Roman R, Najera P, Lopez J (2011) Securing the internet of things. Computer 44(9):51–58CrossRefGoogle Scholar
  20. 20.
    Keoh SL, Kumar S, Tschofenig H (2014) Securing The Internet of Things: a standardization perspective. IEEE Internet of Things J 1(3):265–275CrossRefGoogle Scholar
  21. 21.
    Sicari S, Rizzardi A, Grieco LA, Coen-Porisini A (2015) Security, Privacy and Trust in Internet of Things: The Road Ahead. Comput Netw 76:146–164CrossRefGoogle Scholar
  22. 22.
    Walters JP, Liang Z, Shi W, Chaudhary V (2007) Wireless sensor network security: a survey. In: Security in distributed, grid, mobile, and pervasive computing, vol 1, p 367Google Scholar
  23. 23.
    Brachmann M, Keoh SL, Morchon O, Kumar S (2012) End-to-End Transport Security in the IP-based Internet of Things. In: 21st international conference on computer communications and networks, Munich, Germany, 30 July–2 August 2012Google Scholar
  24. 24.
    Porambage P, Heikkinen A, Harjula E, Gurtov A, Ylianttila M (2016) Quantitative power consumption analysis of a multi-tier wireless multimedia sensor network. In: 22th European wireless conference, Oulu, Finland, 18–20 May 2016Google Scholar
  25. 25.
    Tavli B, Bicakci K, Zilan R, Barcelo-Ordinas JM (2012) A survey of visual sensor network platforms. Multimed Tools Appl 60(3):689–726CrossRefGoogle Scholar
  26. 26.
    Rahimi M, Baer R, Iroezi OI, Garcia JC, Warrior J, Estrin D, Srivastava M (2005) Cyclops: in Situ image sensing and interpretation in wireless sensor networks. In: 3rd international conference on embedded networked sensor systems, San Diego, CA, USA, 2–4 November 2005Google Scholar
  27. 27.
    Hengstler S, Prashanth D, Fong S, Aghajan H (2007) MeshEye: a hybrid-resolution smart camera mote for applications in distributed intelligent surveillance. In: 6th international conference on information processing in sensor networks, Cambridge, MA, USA, 25–27 April 2007Google Scholar
  28. 28.
    Feng WC, Kaiser E, Feng WC, Baillif ML (2005) Panoptes: scalable low-power video sensor networking technologies. ACM Trans Multimed Comput Commun Appl 1(2):151–167CrossRefGoogle Scholar
  29. 29.
    Mekonnen T, Harjula E, Koskela T, Ylianttila M (2017) sleepyCAM: power management mechanism for wireless video-surveillance cameras. In: Workshops in IEEE international conference on communications, Paris, France, 21–25 May 2017Google Scholar
  30. 30.
    Mekonnen T, Harjula E, Heikkinen A, Koskela T, Ylianttila M (2017) Energy efficient event driven video streaming surveillance using sleepyCAM. In: 17th IEEE international conference on computer and information technology, Helsinki, Finland, 21–23 August 2017Google Scholar
  31. 31.
    Jelicic V, Magno M, Brunelli D, Bilas V, Benini L (2014) Benefits of wake-up radio in energy-efficient multimodal surveillance wireless sensor network. IEEE Sens J 14(9):3210–3220CrossRefGoogle Scholar
  32. 32.
    Kulkarni P, Ganesan D, Shenoy P, Lu Q (2005) SensEye: a multi-tier camera sensor network. In: 13th annual ACM international conference on Multimedia, Singapore, 6–12 November 2005Google Scholar
  33. 33.
    Lee JJ, Krishnamachari B, Kuo CC (2004) Impact of heterogeneous deployment on lifetime sensing coverage in sensor networks. In: 1st IEEE communications society conference on sensor and Ad Hoc communications and networks, Santa Clara, CA, USA, 4–7 October 2004Google Scholar
  34. 34.
    He T, Krishnamurthy S, Luo L, Yan T, Gu L, Stoleru R, Ab-delzaher TF (2006) VigilNet: an integrated sensor network system for energy-efficient surveillance. ACM Trans Sens Netw 2(1):1–38CrossRefGoogle Scholar
  35. 35.
    Mekonnen T, Porambage P, Harjula E, Ylianttila M (2017) Energy consumption analysis of high quality multi-tier wireless multimedia sensor network. IEEE Access 5:15848–15858CrossRefGoogle Scholar
  36. 36.
    Kjällman J, Komu M, Kauppinen T (2016) Power aware media delivery platform based on containers. In: 19th international ICIN conference—innovations in clouds, internet and networks, Paris, France, 1–3 March 2016Google Scholar
  37. 37.
    Roman R, Alcaraz C, Lopez J, Sklavos N (2011) Key management systems for sensor networks in the context of the Internet of Things. Comput Electron Eng 37(2):147–159CrossRefGoogle Scholar
  38. 38.
    Zhang Y, Li X, Yang J, Liu Y, Xiong N Vasilakos AV (2013) A real-time dynamic key management for hierarchical wireless multimedia sensor network. Multimed Tools Appl 67(1):97–117Google Scholar
  39. 39.
    Winkler T. Rinner B (2014) security and privacy protection in visual sensor networks: a survey. ACM Comput Surv 47(1):2:1–2:42Google Scholar
  40. 40.
    Porambage P, Braeken A, Kumar P, Gurtov A, Ylianttila M (2017) CHIP: collaborative host identity protocol with efficient key establishment for constrained devices in internet of things. Wirel Pers Commun 96(1):421–440CrossRefGoogle Scholar
  41. 41.
    Host Identity Protocol (HIP) (2008) RFC 5201, IETF, 2008Google Scholar
  42. 42.
    Moskowitz R, Hummen R (2016) HIP Diet EXchange (DEX), Expired Internet-Draft (individual).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Erkki Harjula
    • 1
    Email author
  • Tenager Mekonnen
    • 1
  • Miika Komu
    • 2
  • Pawani Porambage
    • 1
  • Tero Kauppinen
    • 2
  • Jimmy Kjällman
    • 2
  • Mika Ylianttila
    • 1
  1. 1.Centre for Wireless Communication (CWC), University of OuluOuluFinland
  2. 2.Ericsson Research, NomadicLabJorvasFinland

Personalised recommendations