Skip to main content

Energy-Efficient Management and Control in Video Distribution Networks: ‘Legacy’ Hardware-Based Solutions and Perspectives of Virtualized Networking Environments

  • Chapter
  • First Online:
Greening Video Distribution Networks

Abstract

In this chapter, we focus in particular on the issue of the trade-off between network/service performance and energy efficiency in the context of video distribution networks (VDNs). We first provide a short review on the current state and on energy/performance-related aspects in VDNs; then, we consider both local and network-wide management and control policies in this context, and the role of suitable abstractions to convey energy efficiency related parameters to the management and control entities. We address both ‘traditional’ networking architectures based on specialized hardware, and the evolution towards virtualized infrastructures, where multiple players (applications, network service providers and infrastructure providers) interact in a more dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 49.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolla R, Bruschi R, Davoli F, Cucchietti F (2011) Energy efficiency in the Future Internet: A survey of existing approaches and trends in energy-aware fixed net-work infrastructures. IEEE Commun Surv Tutor 13(2):223–244

    Article  Google Scholar 

  2. Idzikowski F, Chiaraviglio FL, Cianfrani López Vizcaíno AJ, Polverini Ye MY (2016) A survey on energy-aware design and operation of core networks. IEEE Commun Surv Tutor 18(2):1453–1499

    Article  Google Scholar 

  3. Maaloul R, Chaari L, Cousin B (2017) Energy saving in carrier-grade networks: a survey. Comput Std Interfaces. https://doi.org/10.1016/j.csi.2017.04.001

    Google Scholar 

  4. Cisco visual networking index (2015) Forecast and methodology, 2014–2019. Cisco Systems, San Jose, CA

    Google Scholar 

  5. Cisco visual networking index (2016) Forecast and methodology, 2015–2020. Cisco Systems, San Jose, CA

    Google Scholar 

  6. Cisco visual networking index (2017) Forecast and methodology, 2015–2020. Cisco Systems, San Jose, CA

    Google Scholar 

  7. Ishii K, Kurumida J, Sato KI, Kudoh T, Namiki S (2015) Unifying top-down and bottom-up approaches to evaluate network energy consumption. IEEE J Lightwave Technol 33(21):4395–4405. Accessed 1 Nov 2015

    Google Scholar 

  8. Metro network traffic growth: an architecture impact study, 1st ed. Alcatel-Lucent, 2013. http://resources.alcatel-lucent.com/asset/171568. Accessed 25 April 2016

  9. Norton W (2014) Internet Transit. In: The 2014 Internet peering playbook

    Google Scholar 

  10. Sandvine (2013) https://www.sandvine.com/downloads/general/global-internet-phenomena/2013/2h-2013-global-internet-phenomena-report.pdf

  11. Sandvine (2015) https://www.sandvine.com/downloads/general/global-internet-phenomena/2015/global-internet-phenomena-africa-middle-east-and-north-america.pdf

  12. Metro network traffic growth: an architecture impact study, 1st ed. Alcatel-Lucent, 2013. http://resources.alcatel-lucent.com/asset/171568. Accessed 25 April 2016

  13. Lee U, Rimac I, Hilt V (2010, April) Greening the internet with content-centric networking. In: Proceedings of the 1st international conference on energy-efficient computing and networking. ACM, pp 179–182

    Google Scholar 

  14. Guan K, Atkinson G, Kilper DC, Gulsen E (2011, June) On the energy efficiency of content delivery architectures. In: 2011 IEEE international conference on communications workshops (ICC). IEEE, pp 1–6

    Google Scholar 

  15. Choi N, Guan K, Kilper DC, Atkinson G (2012, June) In-network caching effect on optimal energy consumption in content-centric networking. In: 2012 IEEE international conference on communications (ICC). IEEE, pp 2889–2894

    Google Scholar 

  16. Osman N, El-Gorashi T, Elmirghani JM (2011, May) Reduction of energy consumption of video-on-demand services using cache size optimization.” In: 2011 Eighth international conference on wireless and optical communications networks (WOCN). IEEE, pp 1–5

    Google Scholar 

  17. Llorca J, Tulino AM, Guan K, Esteban J, Varvello M, Choi N, Kilper D (2013, April) Dynamic in-network caching for energy efficient content delivery. In: 2013 Proceedings IEEE INFOCOM. IEEE, pp 245–249

    Google Scholar 

  18. Mandal U, Chowdhury P, Lange C, Gladisch A, Mukherjee B (2013) Energy-efficient networking for content distribution over telecom network infrastructure. Opt Switch Netw 10(4):393–405

    Article  Google Scholar 

  19. Modrzejewski R, Chiaraviglio L, Tahiri I, Giroire F, Le Rouzic E, Bonetto E et al (2013, December) Energy efficient content distribution in an ISP network. In: 2013 IEEE Global communications conference (GLOBECOM). IEEE, pp 2859–2865

    Google Scholar 

  20. Abji N, Tizghadam A, Leon-Garcia A (2015, November) Energy efficient content delivery in service provider networks with content caching. In: 2015 IEEE Online conference on green communications (OnlineGreenComm), pp 23–29

    Google Scholar 

  21. Savi M, Ayoub O, Musumeci F, Zhe L, Verticale G, Tornatore M (2015, November) Energy-efficient caching for video-on-demand in fixed-mobile convergent networks. In: 2015 IEEE online conference on green communications (OnlineGreenComm), pp 17–22

    Google Scholar 

  22. Jayasundara C, Nirmalathas A, Wong E, Chan C (2011) Improving energy efficiency of video on demand services. IEEE/OSA J Opt Commun Netw 3(11):870–880

    Article  Google Scholar 

  23. Fratini R, Savi M, Verticale G, Tornatore M (2014) Using replicated video servers for VoD traffic offloading in integrated metro/access networks. In: 2014 IEEE international conference on communications (ICC), Sydney, NSW, 2014, pp 3438–3443

    Google Scholar 

  24. Di Pascale E, Payne DB, Ruffini M (2012) Bandwidth and energy savings of locality-aware P2P Content Distribution in next-generation PONs. In: 2012 16th international conference on optical network design and modeling (ONDM), Colchester, 2012, pp 1–6

    Google Scholar 

  25. ITU-T Y.3001 (2011) Future networks: Objectives and design goals. Technical report, ITU-T

    Google Scholar 

  26. Pervasive Mobile Virtual Services, Strategic Research and Innovation Agenda, Expert Advisory Group of the European Technology platform Networld 2020, July 2016. https://www.networld2020.eu/wp-content/uploads/2014/02/SRIA_final.pdf

  27. Ma KJ, Bartoš R, Bhatia S (2011) A survey of schemes for Internet-based video delivery. J Netw Comput Appl 34(5):1572–1586

    Article  Google Scholar 

  28. Popescu A (2014, May) Greening of IP-based video distribution networks: developments and challenges. In: Proceedings of the 10th international conference on communications (COMM 2014), Bucharest, Romania

    Google Scholar 

  29. Bolla R, Bruschi R, Davoli F, Donadio P, Fialho L, Collier M, Lombardo A, Reforgiato D, Riccobene V, Szemethy T (2014) A northbound interface for power management in next generation network devices. IEEE Commun Mag 52(1):149–157

    Article  Google Scholar 

  30. Green Abstraction Layer (GAL) Power management capabilities of the future energy telecommunication fixed network nodes, ETSI Std. 203 237 version 1.1.1 (2013, March) http://www.etsi.org/deliver/etsi_es/203200_203299/203237/01.01.01_60/es_203237v010101p.pdf

  31. RFC1122 Requirements for Internet Hosts - Communication Layers. R. Braden, Ed.. October 1989. (Format: TXT = 295992 bytes) (Updates RFC0793) (Updated by RFC1349, RFC4379, RFC5884, RFC6093, RFC6298, RFC6633, RFC6864, RFC8029) (Also STD0003) (Status: INTERNET STANDARD) (10.17487/RFC1122)

    Google Scholar 

  32. Moustafa H, Zeadally S (2012) Media networks. CRC Press, New York

    Book  Google Scholar 

  33. Lynch J (2017) Advertisers beware: audiences are taking longer than ever to watch TV shows. Adweek.com, 2016. http://www.adweek.com/tv-video/advertisers-beware-audiences-are-taking-longer-ever-watch-tv-shows-172781/. Accessed 20 Aug 2017

  34. Live linear streaming. Comcast Technology Solutions, 2017

    Google Scholar 

  35. Arnason B (2017) NCTC OTT Deals include Sony PlayStation Vue and fuboTV—Telecompetitor. Telecompetitor.com, 2017. http://www.telecompetitor.com/nctc-ott-deals-include-sony-playstation-vue-and-fubotv/. Accessed 20 Aug 2017

  36. Perfecting the Media Experience, Elemental.com, 2016. https://www.elemental.com/resources/case-studies/bt. Accessed: 21 Aug 2017

  37. Sklar B (2013) Digital communications. Pearson, Harlow

    MATH  Google Scholar 

  38. Proakis J, Salehi M (2008) Digital communications. McGraw-Hill, Boston

    Google Scholar 

  39. ITU-T J.83 (2007, December) Digital multi-programme systems for television, sound and data services for cable distribution

    Google Scholar 

  40. European Telecommunications Standards Institute (ETSI) EN 300 429 V1.2.1 (1998-04), Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for cable systems

    Google Scholar 

  41. DVB-S2 Implementation Guidelines (2015, November) Technical report TR 102 376-1 V1.2.1, ETSI

    Google Scholar 

  42. Implementation guidelines for a second generation digital terrestrial television broadcasting system (DVB-T2) (2012, August) TS 102 831 V1. 2.1, ETSI

    Google Scholar 

  43. A/53: ATSC Digital Television Standard (2007, January) ATSC

    Google Scholar 

  44. “Broadcast-Only Tv Homes Grow 41% in Last Five Year…”, ION Media, 2017. https://ionmedia.com/press/imn/broadcast-only-tv-homes-grow-41-in-last-five-years. Accessed 14 Sept 2017

  45. Gwatt.net, (2015) G.W.A.T.T.: Global ‘What if’ Analyzer of neTwork energy consumpTion. http://gwatt.net/intro/5. Accessed 23 Jan 2016

  46. Perfecting the media experience, Elemental.com, 2016. https://www.elemental.com/resources/case-studies/bt. Accessed 23 Aug 2017

  47. Smith J, Nair R (2005) Virtual machines. Morgan Kaufmann, San Francisco, CA

    MATH  Google Scholar 

  48. Stavdas A (2010) Core and metro networks, 1st edn. Wiley, Chichester, West Sussex

    Book  Google Scholar 

  49. Lefevre L (2015) Towards energy proportional clouds, data centers ad networks: The holy grail of energy efficiency? In: IEEE 2015 Online GreenComm (OGC)

    Google Scholar 

  50. Bolla R et al (2013) The green abstraction layer: a standard power-management interface for next-generation network devices. IEEE Internet Comput 17(2):82–86. https://doi.org/10.1109/MIC.2013.39

  51. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures. Commun ACM 17(7):412–421

    Article  MathSciNet  MATH  Google Scholar 

  52. Intel® 64 and IA-32 Architectures Software Developer’s Manual, 1st ed., Intel Corp., Santa Clara, CA, 2014

    Google Scholar 

  53. Jarschel M, Hoßfeld T, Davoli F, Bolla R, Bruschi R, Carrega A (2015) SDN-enabled energy-efficient network management. In: Samdanis K, Rost P, Maeder A, Meo M, Verikoukis C (eds) Green Communications: principles, concepts, and practice. Wiley, pp 323–338

    Google Scholar 

  54. Bolla R, Bruschi R, Carrega A, Davoli F (2014) Green networking with packet processing engines: modeling and optimization. IEEE/ACM Trans Networking 22(1):110–123

    Article  Google Scholar 

  55. Bolla R, Bruschi R, Davoli F, Lombardo C, Pajo JF, Sanchez OR (2017) The dark side of network functions virtualization: a perspective on the technological sustainability. In: 2017 IEEE international conference on communications (ICC), Paris, 2017, pp 1–7. doi:10.1109/ICC.2017.7997129

    Google Scholar 

  56. Hill MD, Marty MR (2008) Amdhal’s Law in the multicore era. IEEE Comput 41(7):33–38

    Article  Google Scholar 

  57. ETSI, “NFV Use Cases.” http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

  58. Nokia 7750 Service Router. http://networks.nokia.com/portfolio/products/7750-service-router

  59. Intel, “Introducing the Intel Xeon Processor E5-2600 v4 Product Family. https://newsroom.intel.com/wpcontent/uploads/sites/11/2016/04/intel-xeon-processor-e5-2600-v4-factsheet-x.pdf

  60. Alcatel-Lucent, “Global “What if” Analyzer of NeTwork Energy ConsumpTion (G.W.A.T.T.).” http://gwatt.net/intro/1

  61. Cisco Systems, Inc (2014, June) The Zettabyte Era: trends and analysis. Technical report

    Google Scholar 

  62. Feknous M, Houdoin T, Le Guyader B, De Biasio J, Gravey A, Gijón JAT (2014) Internet traffic analysis: a case study from two major European operators. In: 2014 IEEE symposium on computers and communications (ISCC), Funchal, 2014, pp 1–7. https://doi.org/10.1109/ISCC.2014.6912519

  63. Al-Fares M, Loukissas A, Vahdat A (2008, August) A scalable, commodity data center network architecture. In: Proceedings of the ACM SIGCOMM 2008 conference on data communication, Seattle, WA, USA, pp 63–74

    Google Scholar 

  64. Rossenhövel C et al (2016) Validating Nokia’s IP Routing & Mobile Gateway VNFs. LightReading, 2016. http://www.lightreading.com/nfv/validating-nokias-ip-routing-and-mobile-gateway-vnfs/d/d-id/720902?_mc=RSS_LR_EDT

Download references

Acknowledegement

This work was partially supported by the INPUT (In-Network Programmability for next-generation personal cloud service support) project, funded by the European Commission under the Horizon 2020 Programme (Grant no. 644672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Davoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolla, R., Bruschi, R., Davoli, F., Depasquale, E.V. (2018). Energy-Efficient Management and Control in Video Distribution Networks: ‘Legacy’ Hardware-Based Solutions and Perspectives of Virtualized Networking Environments. In: Popescu, A. (eds) Greening Video Distribution Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-71718-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71718-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71717-3

  • Online ISBN: 978-3-319-71718-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics