Skip to main content

Intravenous Fluids

  • Chapter
  • First Online:
Surgical Critical Care Therapy
  • 2082 Accesses

Abstract

Precise and careful management of the administration of intravenous fluids is a critical skill for the surgical intensivist. In order to better understand the function of intravenous fluids, we will discuss the various body compartments and their constituents and how fluids can modify the character of those compartments. We will explain the exact composition of the commonly available intravenous fluids, as well as the evidence for their use in typical patient populations and the history behind their genesis. Finally, we will discuss in detail traditional means of volume assessment, invasive monitoring, and newer technologies that utilize minimally invasive or even completely noninvasive monitoring of volume status. At the conclusion of the chapter, the surgical intensivist should be able to rapidly assess a patient’s volume status and administer the appropriate fluid in nearly any scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magnus-Levy A. Physiologie des Stoffwechesels: Handbuch der Pathologie des Stoffwechesels. Noorden CV, editor. Berlin: 1906.

    Google Scholar 

  2. Baumgartner RN, et al. Body composition in elderly people: effect of criterion estimates on predictive equations. Am J Clin Nutr. 1991;53(6):1345–53.

    Article  CAS  Google Scholar 

  3. Williams EL, et al. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.

    CAS  PubMed  Google Scholar 

  4. Arieff AI. Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest. 1999;115(5):1371–7.

    Article  CAS  Google Scholar 

  5. Bishop MH, et al. The relationship between ARDS, pulmonary infiltration, fluid balance, and hemodynamics in critically ill surgical patients. Am Surg. 1991;57(12):785–92.

    CAS  PubMed  Google Scholar 

  6. Plurad D, et al. The decreasing incidence of late posttraumatic acute respiratory distress syndrome: the potential role of lung protective ventilation and conservative transfusion practice. J Trauma. 2007;63(1):1–7; discussion 8.

    Article  Google Scholar 

  7. Martin M, et al. The decreasing incidence and mortality of acute respiratory distress syndrome after injury: a 5-year observational study. J Trauma. 2005;59(5):1107–13.

    Article  Google Scholar 

  8. Tambyraja AL, et al. Patterns and clinical outcomes associated with routine intravenous sodium and fluid administration after colorectal resection. World J Surg. 2004;28(10):1046–51; discussion 1051-2.

    Article  Google Scholar 

  9. Lobo DN, et al. Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet. 2002;359(9320):1812–8.

    Article  Google Scholar 

  10. Brandstrup B, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238(5):641–8.

    Article  Google Scholar 

  11. Nisanevich V, et al. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32.

    Article  Google Scholar 

  12. Shaw A, Raghunathan K. Fluid management in cardiac surgery: colloid or crystalloid? Anesthesiol Clin. 2013;31(2):269–80.

    Article  Google Scholar 

  13. Tocantins LM, Carroll RT, Holburn RH. The clot accelerating effect of dilution on blood and plasma. Relation to the mechanism of coagulation of normal and hemophilic blood. Blood. 1951;6(8):720–39.

    CAS  PubMed  Google Scholar 

  14. Ng KF, Lam CC, Chan LC. In vivo effect of haemodilution with saline on coagulation: a randomized controlled trial. Br J Anaesth. 2002;88(4):475–80.

    Article  CAS  Google Scholar 

  15. Janvrin SB, Davies G, Greenhalgh RM. Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg. 1980;67(10):690–3.

    Article  CAS  Google Scholar 

  16. Ruttmann TG, Jamest MF, Lombard EH. Haemodilution-induced enhancement of coagulation is attenuated in vitro by restoring antithrombin III to pre-dilution concentrations. Anaesth Intensive Care. 2001;29(5):489–93.

    CAS  PubMed  Google Scholar 

  17. Rhee P, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med. 2000;28(1):74–8.

    Article  CAS  Google Scholar 

  18. Awad S, Allison SP, Lobo DN. The history of 0.9% saline. Clin Nutr. 2008;27(2):179–88.

    Article  CAS  Google Scholar 

  19. Rhee P, et al. Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma. 1998;44(2):313–9.

    Article  CAS  Google Scholar 

  20. Koustova E, et al. Effects of lactated Ringer’s solutions on human leukocytes. J Trauma. 2002;52(5):872–8.

    CAS  PubMed  Google Scholar 

  21. Nees JE, et al. Comparison of cardiorespiratory effects of crystalline hemoglobin, whole blood, albumin, and Ringer’s lactate in the resuscitation of hemorrhagic shock in dogs. Surgery. 1978;83(6):639–47.

    CAS  PubMed  Google Scholar 

  22. Rizoli S. PlasmaLyte. J Trauma. 2011;70(5 Suppl):S17–8.

    Article  CAS  Google Scholar 

  23. Shaw AD, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  Google Scholar 

  24. McFarlane C, Lee A. A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia. 1994;49(9):779–81.

    Article  CAS  Google Scholar 

  25. Young JB, et al. Saline versus Plasma-Lyte A in initial resuscitation of trauma patients: a randomized trial. Ann Surg. 2014;259(2):255–62.

    Article  Google Scholar 

  26. Younes RN, et al. Hypertonic solutions in the treatment of hypovolemic shock: a prospective, randomized study in patients admitted to the emergency room. Surgery. 1992;111(4):380–5.

    CAS  PubMed  Google Scholar 

  27. Dubick MA, Shek P, Wade CE. ROC trials update on prehospital hypertonic saline resuscitation in the aftermath of the US-Canadian trials. Clinics (Sao Paulo). 2013;68(6):883–6.

    Article  Google Scholar 

  28. Velasco IT, et al. Hyperosmotic NaCl and severe hemorrhagic shock. Am J Phys. 1980;239(5):H664–73.

    CAS  Google Scholar 

  29. Bulger EM, et al. Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg. 2011;253(3):431–41.

    Article  Google Scholar 

  30. Holcroft JW. The hypertonic saline trial: a possible downside to the gold standard of double blinding. Ann Surg. 2011;253(3):442–3.

    Article  Google Scholar 

  31. Joseph B, et al. The physiological effects of hyperosmolar resuscitation: 5% vs 3% hypertonic saline. Am J Surg. 2014;208(5):697–702.

    Article  Google Scholar 

  32. DuBose JJ, et al. Clinical experience using 5% hypertonic saline as a safe alternative fluid for use in trauma. J Trauma. 2010;68(5):1172–7.

    Article  CAS  Google Scholar 

  33. Powers KA, et al. Twenty-five percent albumin prevents lung injury following shock/resuscitation. Crit Care Med. 2003;31(9):2355–63.

    Article  CAS  Google Scholar 

  34. Caironi P, Gattinoni L. The clinical use of albumin: the point of view of a specialist in intensive care. Blood Transfus. 2009;7(4):259–67.

    PubMed  PubMed Central  Google Scholar 

  35. Finfer S, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  Google Scholar 

  36. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;(2):CD000567.

    Google Scholar 

  37. Delaney AP, et al. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med. 2011;39(2):386–91.

    Article  CAS  Google Scholar 

  38. Rochwerg B, et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014;161(5):347–55.

    Article  Google Scholar 

  39. Conhaim RL, et al. Pulmonary capillary sieving of hetastarch is not altered by LPS-induced sepsis. J Trauma. 1999;46(5):800–8; discussion 808-10.

    Article  CAS  Google Scholar 

  40. Rosengren S, Ley K, Arfors KE. Dextran sulfate prevents LTB4-induced permeability increase, but not neutrophil emigration, in the hamster cheek pouch. Microvasc Res. 1989;38(3):243–54.

    Article  CAS  Google Scholar 

  41. Hayes PD, et al. Transcranial Doppler-directed Dextran-40 therapy is a cost-effective method of preventing carotid thrombosis after carotid endarterectomy. Eur J Vasc Endovasc Surg. 2000;19(1):56–61.

    Article  CAS  Google Scholar 

  42. Cigna E, et al. Postoperative care in finger replantation: our case-load and review of the literature. Eur Rev Med Pharmacol Sci. 2015;19(14):2552–61.

    CAS  PubMed  Google Scholar 

  43. Feest TG. Low molecular weight dextran: a continuing cause of acute renal failure. Br Med J. 1976;2(6047):1300.

    Article  CAS  Google Scholar 

  44. Farber A, et al. Intraoperative use of dextran is associated with cardiac complications after carotid endarterectomy. J Vasc Surg. 2013;57(3):635–41.

    Article  Google Scholar 

  45. Brunkhorst FM, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

    Article  CAS  Google Scholar 

  46. Perner A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  Google Scholar 

  47. Bartels K, Thiele RH, Gan TJ. Rational fluid management in today’s ICU practice. Crit Care. 2013;17(Suppl 1):S6.

    Article  Google Scholar 

  48. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8.

    Article  Google Scholar 

  49. Swan HJ, et al. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283(9):447–51.

    Article  CAS  Google Scholar 

  50. Harvey S, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366(9484):472–7.

    Article  Google Scholar 

  51. Barmparas G, et al. Swan-Ganz catheter use in trauma patients can be reduced without negatively affecting outcomes. World J Surg. 2011;35(8):1809–17.

    Article  Google Scholar 

  52. Cioccari L, et al. Hemodynamic assessment of critically ill patients using a miniaturized transesophageal echocardiography probe. Crit Care. 2013;17(3):R121.

    Article  Google Scholar 

  53. Abbas SM, Hill AG. Systematic review of the literature for the use of oesophageal Doppler monitor for fluid replacement in major abdominal surgery. Anaesthesia. 2008;63(1):44–51.

    Article  CAS  Google Scholar 

  54. Pearse RM, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–90.

    Article  CAS  Google Scholar 

  55. Khwannimit B, Bhurayanontachai R. Prediction of fluid responsiveness in septic shock patients: comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation. Eur J Anaesthesiol. 2012;29(2):64–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rhee, P., Evans, P.M. (2018). Intravenous Fluids. In: Salim, A., Brown, C., Inaba, K., Martin, M. (eds) Surgical Critical Care Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-71712-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71712-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71711-1

  • Online ISBN: 978-3-319-71712-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics