New Fever in the Surgical Intensive Care Unit Patient

  • Evan Ross
  • Deidra Allison
  • Athena Hobbs
  • Ben Coopwood


Fever is defined as an increase in core body temperature above 38.3 °C (101 °F). It can be considered part of the body’s adaptive and regulated response to infection, trauma, and tissue injury, or it can be considered maladaptive and dysregulated, as when caused by a drug side effect, venous thrombosis, thyroid storm, or a neurological injury. Fever has been shown to enhance the immune response to invading pathogens, while on the other hand, fever increases cardiac output, oxygen consumption, carbon dioxide production, and energy expenditure, which can have untoward effects in those with poor cardiopulmonary reserve, those suffering from neurologic insult, and pregnant patients. Determining the etiology of fever and the appropriate clinical treatment is therefore an important element in improving outcomes for critically ill patients.


Fever ICU Infection Sepsis Ventilator-associated pneumonia Central venous catheter Urinary catheter management C. difficile Acute acalculous cholecystitis SIRS Postoperative fever 


  1. 1.
    Kluger MJ, Kozak W, Conn CA, Leon LR, Soszynski D. Role of fever in disease. Ann N Y Acad Sci. 1998;856(1):224–33.CrossRefGoogle Scholar
  2. 2.
    Manthous CA, Hall JB, Olson D, et al. Effect of cooling on oxygen consumption in febrile critically ill patients. Am J Respir Crit Care Med. 1995;151(1):10–4.CrossRefGoogle Scholar
  3. 3.
    Scammell TE, Elmquist JK, Griffin JD, Saper CB. Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J Neurosci. 1996;16(19):6246–54.CrossRefGoogle Scholar
  4. 4.
    Netea MG, Kullberg BJ, Van der Meer JW. Circulating cytokines as mediators of fever. Clin Infect Dis. 2000;31(Supplement 5):S178–84.CrossRefGoogle Scholar
  5. 5.
    Dinarello CA. Proinflammatory cytokines*. Chest. 2000;118(2):503.CrossRefGoogle Scholar
  6. 6.
    Kalinski P. Regulation of immune responses by prostaglandin E2. J Immunol. 2012;188(1):21–8.CrossRefGoogle Scholar
  7. 7.
    Narumiya S, FitzGerald GA. Genetic and pharmacological analysis of prostanoid receptor function. J Clin Invest. 2001;108(1):25–30.CrossRefGoogle Scholar
  8. 8.
    An S, Yang J, So SW, Zeng L, Goetzl EJ. Isoforms of the EP3 subtype of human prostaglandin E2 receptor transduce both intracellular calcium and cAMP signals. Biochemistry. 1994;33(48):14496–502.CrossRefGoogle Scholar
  9. 9.
    Nakamura K, Matsumura K, Kaneko T, Kobayashi S, Katoh H, Negishi M. The rostral raphe pallidus nucleus mediates pyrogenic transmission from the preoptic area. J Neurosci. 2002;22(11):4600–10.CrossRefGoogle Scholar
  10. 10.
    Nakamura Y, Nakamura K, Matsumura K, Kobayashi S, Kaneko T, Morrison SF. Direct pyrogenic input from prostaglandin EP3 receptor-expressing preoptic neurons to the dorsomedial hypothalamus. Eur J Neurosci. 2005;22(12):3137–46.CrossRefGoogle Scholar
  11. 11.
    Saper CB, Romanovsky AA, Scammell TE. Neural circuitry engaged by prostaglandins during the sickness syndrome. Nat Neurosci. 2012;15(8):1088–95.CrossRefGoogle Scholar
  12. 12.
    Laupland KB, Shahpori R, Kirkpatrick AW, Ross T, Gregson DB, Stelfox HT. Occurrence and outcome of fever in critically ill adults. Crit Care Med. 2008;36(5):1531–5.CrossRefGoogle Scholar
  13. 13.
    Barie PS, Hydo LJ, Eachempati SR. Causes and consequences of fever complicating critical surgical illness. Surg Infect. 2004;5(2):145–59.CrossRefGoogle Scholar
  14. 14.
    O’Grady NP, Barie PS, Bartlett JG, et al. Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med. 2008;36(4):1330–49.CrossRefGoogle Scholar
  15. 15.
    Young P, Saxena M, Bellomo R, et al. Acetaminophen for fever in critically ill patients with suspected infection. N Engl J Med. 2015;373(23):2215–24.CrossRefGoogle Scholar
  16. 16.
    Chen Q, Fisher DT, Clancy KA, et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol. 2006;7(12):1299–308.CrossRefGoogle Scholar
  17. 17.
    Van Oss C, Absolom D, Moore L, Park B, Humbert J. Effect of temperature on the chemotaxis, phagocytic engulfment, digestion and O2 consumption of human polymorphonuclear leukocytes. J Reticuloendothel Soc. 1980;27(6):561.PubMedGoogle Scholar
  18. 18.
    Nahas G, Tannieres M, Lennon J. Direct measurement of leukocyte motility: effects of pH and temperature. Exp Biol Med. 1971;138(1):350–2.CrossRefGoogle Scholar
  19. 19.
    Roberts N, Steigbigel R. Hyperthermia and human leukocyte functions: effects on response of lymphocytes to mitogen and antigen and bactericidal capacity of monocytes and neutrophils. Infect Immun. 1977;18(3):673–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Graham GG, Davies MJ, Day RO, Mohamudally A, Scott KF. The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology. 2013;21(3):201–32.CrossRefGoogle Scholar
  21. 21.
    Clemmer TP, Fisher CJ Jr, Bone RC, Slotman GJ, Metz CA, Thomas FO. Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med. 1992;20(10):1395–401.CrossRefGoogle Scholar
  22. 22.
    Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.CrossRefGoogle Scholar
  23. 23.
    Torio CM, Moore BJ. National inpatient hospital costs: the most expensive conditions by payer, 2013. Agency for Healthcare Research and Quality; 2016.Google Scholar
  24. 24.
    Stevenson EK, Rubenstein AR, Radin GT, Wiener RS, Walkey AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42(3):625.CrossRefGoogle Scholar
  25. 25.
    Caironi P, Tognoni G, Masson S, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21.CrossRefGoogle Scholar
  26. 26.
    Investigators SS. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96.CrossRefGoogle Scholar
  27. 27.
    Khwannimit B, Bhurayanontachai R. Prediction of fluid responsiveness in septic shock patients: comparing stroke volume variation by FloTrac/Vigileo and automated pulse pressure variation. Eur J Anaesthesiol (EJA). 2012;29(2):64–9.CrossRefGoogle Scholar
  28. 28.
    Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81.CrossRefGoogle Scholar
  29. 29.
    Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness?: a systematic review of the literature and the tale of seven mares. Chest J. 2008;134(1):172–8.CrossRefGoogle Scholar
  30. 30.
    Safdar N, Dezfulian C, Collard HR, Saint S. Clinical and economic consequences of ventilator-associated pneumonia: a systematic review. Crit Care Med. 2005;33(10):2184–93.CrossRefGoogle Scholar
  31. 31.
    Kalil AC, Metersky ML, Klompas M, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63(5):e61–e111. ciw353.CrossRefGoogle Scholar
  32. 32.
    Group CCCT. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;2006(355):2619–30.Google Scholar
  33. 33.
    Morata L, Cobos-Trigueros N, Martínez JA, et al. Influence of multi-drug resistance and appropriate empirical therapy on Pseudomonas Aeruginosa bacteremia 30-days mortality. Antimicrob Agents Chemother. 2012;56(9):4833–7. AAC. 00750-00712.CrossRefGoogle Scholar
  34. 34.
    Agbaht K, Diaz E, Muñoz E, et al. Bacteremia in patients with ventilator-associated pneumonia is associated with increased mortality: a study comparing bacteremic vs. nonbacteremic ventilator-associated pneumonia. Crit Care Med. 2007;35(9):2064–70.CrossRefGoogle Scholar
  35. 35.
    Mermel LA, Allon M, Bouza E, et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;49(1):1–45.CrossRefGoogle Scholar
  36. 36.
    Hooton TM, Bradley SF, Cardenas DD, et al. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis. 2010;50(5):625–63.CrossRefGoogle Scholar
  37. 37.
    Stovall RT, Haenal JB, Jenkins TC, et al. A negative urinalysis rules out catheter-associated urinary tract infection in trauma patients in the intensive care unit. J Am Coll Surg. 2013;217(1):162–6.CrossRefGoogle Scholar
  38. 38.
    Owen CC, Jain R. Acute acalculous cholecystitis. Curr Treat Options Gastroenterol. 2005;8(2):99–104.CrossRefGoogle Scholar
  39. 39.
    Huffman JL, Schenker S. Acute acalculous cholecystitis: a review. Clin Gastroenterol Hepatol. 2010;8(1):15–22.CrossRefGoogle Scholar
  40. 40.
    Barie PS, Eachempati SR. Acute acalculous cholecystitis. In:Acute cholecystitis: Springer; 2015. p. 187–96.CrossRefGoogle Scholar
  41. 41.
    Corwin HL, Gettinger A, Pearl RG, et al. The CRIT Study: anemia and blood transfusion in the critically ill-current clinical practice in the United States. Crit Care Med. 2004;32(1):39–52.CrossRefGoogle Scholar
  42. 42.
    Brittingham TE, Chaplin H. Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. J Am Med Assoc. 1957;165(7):819–25.CrossRefGoogle Scholar
  43. 43.
    Muylle L, Joos M, Wouters E, Bock R, Peetermans M. Increased tumor necrosis factor alpha (TNF alpha), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNF alpha and IL-6 levels and febrile transfusion reactions. Transfusion. 1993;33(3):195–9.CrossRefGoogle Scholar
  44. 44.
    Muylle L. The role of cytokines in blood transfusion reactions. Blood Rev. 1995;9(2):77–83.CrossRefGoogle Scholar
  45. 45.
    King KE, Shirey RS, Thoman SK, Bensen-Kennedy D, Tanz WS, Ness PM. Universal leukoreduction decreases the incidence of febrile nonhemolytic transfusion reactions to RBCs. Transfusion. 2004;44(1):25–9.CrossRefGoogle Scholar
  46. 46.
    Yazer MH, Podlosky L, Clarke G, Nahirniak SM. The effect of prestorage WBC reduction on the rates of febrile nonhemolytic transfusion reactions to platelet concentrates and RBC. Transfusion. 2004;44(1):10–5.CrossRefGoogle Scholar
  47. 47.
    Paglino JC, Pomper GJ, Fisch GS, Champion MH, Snyder EL. Reduction of febrile but not allergic reactions to RBCs and platelets after conversion to universal prestorage leukoreduction. Transfusion. 2004;44(1):16–24.CrossRefGoogle Scholar
  48. 48.
    Geiger TL, Howard SC. Acetaminophen and diphenhydramine premedication for allergic and febrile nonhemolytic transfusion reactions: good prophylaxis or bad practice? Transfus Med Rev. 2007;21(1):1–12.CrossRefGoogle Scholar
  49. 49.
    Tobian AA, King KE, Ness PM. Transfusion premedications: a growing practice not based on evidence. Transfusion. 2007;47(6):1089–96.CrossRefGoogle Scholar
  50. 50.
    Sazama K. Reports of 355 transfusion-associated deaths: 1976 through 1985. Transfusion. 1990;30(7):583–90.CrossRefGoogle Scholar
  51. 51.
    Linden JV, Wagner K, Voytovich AE, Sheehan J. Transfusion errors in New York State: an analysis of 10 years' experience. Transfusion. 2000;40(10):1207–13.CrossRefGoogle Scholar
  52. 52.
    Gilliss BM, Looney MR, Gropper MA. Reducing noninfectious risks of blood transfusion. J Am Soc Anesthesiologists. 2011;115(3):635–49.Google Scholar
  53. 53.
    Eder AF, Chambers LA. Noninfectious complications of blood transfusion. Arch Pathol Lab Med. 2007;131(5):708–18.PubMedGoogle Scholar
  54. 54.
    Patel RA, Gallagher JC. Drug fever. Pharmacotherapy. 2010;30(1):57–69.CrossRefGoogle Scholar
  55. 55.
    Tabor PA. Drug-induced fever. Drug Intell Clin Pharm. 1986;20(6):413–20.CrossRefGoogle Scholar
  56. 56.
    Harris L, Holdsambeck H. Drug fever--surprisingly common and costly. Alabama medicine. J Med Assoc State Ala. 1986;56(3):19.Google Scholar
  57. 57.
    Mackowiak PA, LeMAISTRE CF. Drug fever: a critical appraisal of conventional concepts. An analysis of 51 episodes in two Dallas hospitals and 97 episodes reported in the English literature. Ann Intern Med. 1987;106(5):728–33.CrossRefGoogle Scholar
  58. 58.
    Johnson DH, Cunha BA. Drug fever. Infect Dis Clin N Am. 1996;10(1):85–91.CrossRefGoogle Scholar
  59. 59.
    Tisdale JE, Miller DA. Drug-induced diseases: prevention, detection, and management. Bethesda: ASHP; 2010.Google Scholar
  60. 60.
    Roush MK, Nelson KM. Understanding drug-induced febrile reactions: when a fever of unknown etiology develops it is important to consider drug fever to avoid delays additional costs of treatment. Am Pharm. 1993;33(10):39–42.CrossRefGoogle Scholar
  61. 61.
    Tierney L. Drug fever. West J Med. 1978;129(4):321.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Oizumi K, Onuma K, Watanabe A, Motomiya M. Clinical study of drug fever induced by parenteral administration of antibiotics. Tohoku J Exp Med. 1989;159(1):45–56.CrossRefGoogle Scholar
  63. 63.
    Meier K, Lee K. Neurogenic fever review of pathophysiology, evaluation, and management. J Intensive Care Med. 2016;32(2):124–9. Scholar
  64. 64.
    Albrecht RF, Wass CT, Lanier WL. Occurrence of potentially detrimental temperature alterations in hospitalized patients at risk for brain injury. Paper presented at: Mayo Clinic Proceedings 1998.CrossRefGoogle Scholar
  65. 65.
    Choi HA, Ko S-B, Presciutti M, et al. Prevention of shivering during therapeutic temperature modulation: the Columbia anti-shivering protocol. Neurocrit Care. 2011;14(3):389–94.CrossRefGoogle Scholar
  66. 66.
    Broessner G, Beer R, Lackner P, et al. Prophylactic, endovascularly based, long-term normothermia in ICU patients with severe cerebrovascular disease. Stroke. 2009;40(12):e657–65.CrossRefGoogle Scholar
  67. 67.
    Bajwa SJS, Jindal R. Endocrine emergencies in critically ill patients: challenges in diagnosis and management. Indian J Endocrinol Metab. 2012;16(5):722.CrossRefGoogle Scholar
  68. 68.
    Burch HB, Wartofsky L. Life-threatening thyrotoxicosis. Thyroid storm. Endocrinol Metab Clin N Am. 1993;22(2):263–77.Google Scholar
  69. 69.
    Sarlis NJ, Gourgiotis L. Thyroid emergencies. Rev Endocr Metab Disord. 2003;4(2):129–36.CrossRefGoogle Scholar
  70. 70.
    Bahn RS, Burch HB, Cooper DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21(6):593–646.CrossRefGoogle Scholar
  71. 71.
    Haut ER, Chang DC, Pierce CA, et al. Predictors of posttraumatic deep vein thrombosis (DVT): hospital practice versus patient factors—an analysis of the National Trauma Data Bank (NTDB). J Trauma Acute Care Surg. 2009;66(4):994–1001.CrossRefGoogle Scholar
  72. 72.
    Barba R, Di Micco P, Blanco-Molina Á, et al. Fever and deep venous thrombosis. Findings from the RIETE registry. J Thromb Thrombolysis. 2011;32(3):288–92.CrossRefGoogle Scholar
  73. 73.
    de Wit M, Jones DG, Sessler CN, Zilberberg MD, Weaver MF. Alcohol-use disorders in the critically ill patient. Chest J. 2010;138(4):994–1003.CrossRefGoogle Scholar
  74. 74.
    Awissi D-K, Lebrun G, Coursin DB, Riker RR, Skrobik Y. Alcohol withdrawal and delirium tremens in the critically ill: a systematic review and commentary. Intensive Care Med. 2013;39(1):16–30.CrossRefGoogle Scholar
  75. 75.
    Daeppen J-B, Gache P, Landry U, et al. Symptom-triggered vs fixed-schedule doses of benzodiazepine for alcohol withdrawal: a randomized treatment trial. Arch Intern Med. 2002;162(10):1117–21.CrossRefGoogle Scholar
  76. 76.
    Sullivan JT, Sykora K, Schneiderman J, Naranjo CA, Sellers EM. Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br J Addict. 1989;84(11):1353–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Evan Ross
    • 1
  • Deidra Allison
    • 2
  • Athena Hobbs
    • 3
  • Ben Coopwood
    • 4
  1. 1.Department of SurgeryThe University of Texas Medical BranchGalvestonUSA
  2. 2.Dell Seton Medical Center at University of Texas, Surgical Intensive Care UnitAustinUSA
  3. 3.Department of Clinical PharmacyBaptist Memorial Health Care & The University of Tennessee Health Science Center – MemphisMemphisUSA
  4. 4.Department of SurgeryDell Medical School, University of Texas at AustinAustinUSA

Personalised recommendations