Skip to main content

Spinal Cord Injury

  • Chapter
  • First Online:
Surgical Critical Care Therapy
  • 2309 Accesses

Abstract

Spinal cord injuries have devastating neurologic sequelae, despite specialized in-hospital management and skilled rehabilitation. Upon initial stabilization, a detailed examination and imaging are vital to diagnose and classify spinal cord injuries. Acute management relies on in-line immobilization and prevention of secondary insults. Medical therapy adds little to neurologic recovery. Systemic complications have to be recognized and managed aggressively, as they are associated with significant morbidity and mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Spinal Cord Injury Statistical Center. Facts and figures at a glance. Birmingham, AL: University of Alabama at Birmingham; 2016.

    Google Scholar 

  2. Ma VY, Chan L, Carruthers KJ. Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain. Arch Phys Med Rehabil. 2014;95:986–95. e1.

    Article  Google Scholar 

  3. Maung AA, Johnson DC, Barre K, et al. Cervical spine MRI in patients with negative CT: a prospective, multicenter study of the Research Consortium of New England Centers for Trauma (ReCONECT). J Trauma Acute Care Surg. 2017;82:263–9.

    Article  Google Scholar 

  4. Bracken MB, Webb SB Jr, Wagner FC. Classification of the severity of acute spinal cord injury: implications for management. Paraplegia. 1978;15:319–26.

    Article  CAS  Google Scholar 

  5. Tezer M, Erturer RE, Ozturk C, Ozturk I, Kuzgun U. Conservative treatment of fractures of the thoracolumbar spine. Int Orthop. 2005;29:78–82.

    Article  Google Scholar 

  6. McLain RF, Benson DR. Urgent surgical stabilization of spinal fractures in polytrauma patients. Spine (Phila Pa 1976). 1999;24:1646–54.

    Article  CAS  Google Scholar 

  7. McKinley W, Meade MA, Kirshblum S, Barnard B. Outcomes of early surgical management versus late or no surgical intervention after acute spinal cord injury. Arch Phys Med Rehabil. 2004;85:1818–25.

    Article  Google Scholar 

  8. Hall ED, Yonkers PA, Andrus PK, Cox JW, Anderson DK. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma. 1992;9(Suppl 2):S425–42.

    PubMed  Google Scholar 

  9. Bracken MB, Shepard MJ, Hellenbrand KG, et al. Methylprednisolone and neurological function 1 year after spinal cord injury. Results of the National Acute Spinal Cord Injury Study. J Neurosurg. 1985;63:704–13.

    Article  CAS  Google Scholar 

  10. Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322:1405–11.

    Article  CAS  Google Scholar 

  11. Hurlbert RJ, Hadley MN, Walters BC, et al. Pharmacological therapy for acute spinal cord injury. Neurosurgery. 2013;72(Suppl 2):93–105.

    Article  Google Scholar 

  12. Mocchetti I. Exogenous gangliosides, neuronal plasticity and repair, and the neurotrophins. Cell Mol Life Sci. 2005;62:2283–94.

    Article  CAS  Google Scholar 

  13. Chinnock P, Roberts I. Gangliosides for acute spinal cord injury. Cochrane Database Syst Rev. 2005;(2):CD004444.

    Google Scholar 

  14. Zhai HW, Gong ZK, Sun J, et al. Ganglioside with nerve growth factor for the recovery of extremity function following spinal cord injury and somatosensory evoked potential. Eur Rev Med Pharmacol Sci. 2015;19:2282–6.

    PubMed  Google Scholar 

  15. Schwartz G, Fehlings MG. Evaluation of the neuroprotective effects of sodium channel blockers after spinal cord injury: improved behavioral and neuroanatomical recovery with riluzole. J Neurosurg. 2001;94:245–56.

    CAS  PubMed  Google Scholar 

  16. Grossman RG, Fehlings MG, Frankowski RF, et al. A prospective, multicenter, phase I matched-comparison group trial of safety, pharmacokinetics, and preliminary efficacy of riluzole in patients with traumatic spinal cord injury. J Neurotrauma. 2014;31:239–55.

    Article  Google Scholar 

  17. Hawryluk G, Whetstone W, Saigal R, et al. Mean arterial blood pressure correlates with neurological recovery after human spinal cord injury: analysis of high frequency physiologic data. J Neurotrauma. 2015;32:1958–67.

    Article  Google Scholar 

  18. Martin ND, Kepler C, Zubair M, Sayadipour A, Cohen M, Weinstein M. Increased mean arterial pressure goals after spinal cord injury and functional outcome. J Emerg Trauma Shock. 2015;8:94–8.

    Article  Google Scholar 

  19. Dietrich WD, Levi AD, Wang M, Green BA. Hypothermic treatment for acute spinal cord injury. Neurotherapeutics. 2011;8:229–39.

    Article  Google Scholar 

  20. Thietje R, Pouw MH, Schulz AP, Kienast B, Hirschfeld S. Mortality in patients with traumatic spinal cord injury: descriptive analysis of 62 deceased subjects. J Spinal Cord Med. 2011;34:482–7.

    Article  Google Scholar 

  21. Meng L, Wang C, Li J, Zhang J. Early vs late tracheostomy in critically ill patients: a systematic review and meta-analysis. Clin Respir J. 2016;10:684–92.

    Article  Google Scholar 

  22. Dalal K, DiMarco AF. Diaphragmatic pacing in spinal cord injury. Phys Med Rehabil Clin N Am. 2014;25:619–29. viii.

    Article  Google Scholar 

  23. Kim T, Jwa CS. Effect of alpha-1-adrenergic agonist, midodrine for the management of long-standing neurogenic shock in patient with cervical spinal cord injury: a case report. Korean J Neurotrauma. 2015;11:147–50.

    Article  Google Scholar 

  24. Giorgi Pierfranceschi M, Donadini MP, Dentali F, et al. The short- and long-term risk of venous thromboembolism in patients with acute spinal cord injury: a prospective cohort study. Thromb Haemost. 2013;109:34–8.

    Article  CAS  Google Scholar 

  25. Maung AA, Schuster KM, Kaplan LJ, Maerz LL, Davis KA. Risk of venous thromboembolism after spinal cord injury: not all levels are the same. J Trauma. 2011;71:1241–5.

    Article  Google Scholar 

  26. Hsieh CH, DeJong G, Groah S, Ballard PH, Horn SD, Tian W. Comparing rehabilitation services and outcomes between older and younger people with spinal cord injury. Arch Phys Med Rehabil. 2013;94:S175–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kasotakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hernon, M., Kasotakis, G. (2018). Spinal Cord Injury. In: Salim, A., Brown, C., Inaba, K., Martin, M. (eds) Surgical Critical Care Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-71712-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71712-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71711-1

  • Online ISBN: 978-3-319-71712-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics