Skip to main content

Advanced Modalities and Rescue Therapies for Severe Respiratory Failure

  • Chapter
  • First Online:
  • 2012 Accesses

Abstract

This chapter focuses on frequently used adjuncts to traditional mechanical ventilation that are now available in the intensive care unit to manage severe respiratory failure and the acute respiratory distress syndrome (ARDS). Modalities discussed will include airway pressure release ventilation, high-frequency mechanical ventilation, prone positioning, neuromuscular blockade, inhaled selective pulmonary vasodilators nitric oxide and epoprostenol, and ECMO. These advanced modalities for severe respiratory failure will be described in some detail, but this is not intended as a definitive exploration of each topic. Where available, current data supporting each intervention is presented, but, importantly, definitive high-quality evidence is lacking for several of these modalities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellani G, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800.

    Article  CAS  Google Scholar 

  2. Hemmila MR, Napolitano LM. Severe respiratory failure: advanced treatment options. Crit Care Med. 2006;34:S278–90.

    Article  CAS  Google Scholar 

  3. Acute Respiratory Distress Syndrome Network, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  4. Talmor D, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.

    Article  CAS  Google Scholar 

  5. Mercat A, et al. Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:646–55.

    Article  CAS  Google Scholar 

  6. Santa Cruz R, Rojas JI, Nervi R, Heredia R, Ciapponi A. High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev. 2013;(338):CD009098.

    Google Scholar 

  7. Meade MO, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008;299:637–45.

    Article  CAS  Google Scholar 

  8. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006;34:1311–8.

    Article  Google Scholar 

  9. Brower RG, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004;351:327–36.

    Article  Google Scholar 

  10. Kacmarek RM, et al. Open lung approach for the acute respiratory distress syndrome: a pilot, randomized controlled trial. Crit Care Med. 2016;44:32–42.

    Article  CAS  Google Scholar 

  11. Fan E, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.

    Article  Google Scholar 

  12. Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15:459–61.

    Article  CAS  Google Scholar 

  13. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15:462–6.

    Article  CAS  Google Scholar 

  14. Gurevitch MJ, Van Dyke J, Young ES, Jackson K. Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome. Treatment with inverse ratio ventilation. Chest. 1986;89:211–3.

    Article  CAS  Google Scholar 

  15. Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33:S228–40.

    Article  Google Scholar 

  16. Je.rrt. Airway pressure release ventilation graph. (Wikimedia Commons).

    Google Scholar 

  17. Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159:1241–8.

    Article  CAS  Google Scholar 

  18. Kallet RH. Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: part 2: airway pressure release ventilation. Respir Care. 2011;56:190–203.– discussion 203–6.

    Article  Google Scholar 

  19. Fan E, Khatri P, Mendez-Tellez PA, Shanholtz C, Needham DM. Review of a large clinical series: sedation and analgesia usage with airway pressure release and assist-control ventilation for acute lung injury. J Intensive Care Med. 2008;23:376–83.

    Article  Google Scholar 

  20. Daoud EG. Airway pressure release ventilation. Ann Thorac Med. 2007;2:176–9.

    Article  Google Scholar 

  21. Schultz TR, et al. Airway pressure release ventilation in pediatrics. Pediatr Crit Care Med. 2001;2:243–6.

    Article  CAS  Google Scholar 

  22. Varpula T, Jousela I, Niemi R, Takkunen O, Pettilä V. Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol Scand. 2003;47:516–24.

    Article  CAS  Google Scholar 

  23. Kamath SS, Super DM, Mhanna MJ. Effects of airway pressure release ventilation on blood pressure and urine output in children. Pediatr Pulmonol. 2010;45:48–54.

    Article  Google Scholar 

  24. Maung AA, Luckianow G, Kaplan LJ. Lessons learned from airway pressure release ventilation. J Trauma Acute Care Surg. 2012;72:624–8.

    Article  Google Scholar 

  25. Hering Rudolf MD, et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99:1137–44.

    Article  CAS  Google Scholar 

  26. Garner W, Downs JB, Stock MC, Rasanen J. Airway Pressure Release Ventilation (APRV). A human trial. Chest. 1988;94:779–81.

    Article  CAS  Google Scholar 

  27. Navarrete-navarro P, Reynolds N, Rivera R, Chiu WC. Acute respiratory distress syndrome among trauma patients: trends in ICU mortality, risk factors, complications and resource utilization. Intensive Care Med. 2001;27:1133–40.

    Article  CAS  Google Scholar 

  28. Andrews PL, et al. Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: a systematic review of observational trauma ARDS literature. J Trauma Acute Care Surg. 2013;75:635–41.

    Article  Google Scholar 

  29. Varpula T, et al. Airway pressure release ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol Scand. 2004;48:722–31.

    Article  CAS  Google Scholar 

  30. Maxwell RA, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma. 2010;69:501–11.

    Article  Google Scholar 

  31. Rose L, Hawkins M. Airway pressure release ventilation and biphasic positive airway pressure: a systematic review of definitional criteria. Intensive Care Med. 2008;34:1766–73.

    Article  Google Scholar 

  32. Jonzon A, Oberg PA, Sedin G, Sjöstrand U. High-frequency positive-pressure ventilation by endotracheal insufflation. Acta Anaesthesiol Scand. 1971;43(Suppl 43):1–43.

    Article  Google Scholar 

  33. Lunkenheimer PP, et al. Application of transtracheal pressure oscillations as a modification of “diffusing respiration”. BJA Br J Anaesth. 1972;44:627.

    Article  CAS  Google Scholar 

  34. Lall R, et al. A randomised controlled trial and cost-effectiveness analysis of high-frequency oscillatory ventilation against conventional artificial ventilation for adults with acute respiratory distress syndrome. The OSCAR (OSCillation in ARDS) study. Health Technol Assess. 2015;19:1–177.– vii.

    Article  Google Scholar 

  35. Facchin F, Fan E. Airway pressure release ventilation and high-frequency oscillatory ventilation: potential strategies to treat severe hypoxemia and prevent ventilator-induced lung injury. Respir Care. 2015;60:1509–21.

    Article  Google Scholar 

  36. Slutsky AS, Drazen JM. Ventilation with small tidal volumes. N Engl J Med. 2002;347:630–1.

    Article  Google Scholar 

  37. Fessler HE, et al. A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med. 2007;35:1649–54.

    Article  Google Scholar 

  38. Derdak S, et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults. Am J Respir Crit Care Med. 2012;166:801–8.

    Article  Google Scholar 

  39. Bollen CW, et al. High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care. 2005;9:R430–9.

    Article  Google Scholar 

  40. HIFI Study Group. High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. The HIFI Study Group. N Engl J Med. 1989;320:88–93.

    Article  Google Scholar 

  41. Johnson AH, et al. High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med. 2002;347:633–42.

    Article  Google Scholar 

  42. Gerstmann DR, et al. The Provo multicenter early high-frequency oscillatory ventilation trial: improved pulmonary and clinical outcome in respiratory distress syndrome. Pediatrics. 1996;98:1044–57.

    CAS  PubMed  Google Scholar 

  43. Cools F, Offringa M, Lm A. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants (Review). 2015. doi:https://doi.org/10.1002/14651858.CD000104.pub4.www.cochranelibrary.com.

  44. Fort P, et al. High-frequency oscillatory ventilation for adult respiratory distress syndrome – a pilot study. Crit Care Med. 1997;25:937–47.

    Article  CAS  Google Scholar 

  45. Young D, et al. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–13.

    Article  CAS  Google Scholar 

  46. Ferguson ND, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805.

    Article  CAS  Google Scholar 

  47. Nguyen SQ, Divino CM. Surgical residents as medical student mentors. Am J Surg. 2007;193:90–3.

    Article  Google Scholar 

  48. Ng J, Ferguson ND. High-frequency oscillatory ventilation: still a role? Curr Opin Crit Care. 2017;23:175–9.

    Article  Google Scholar 

  49. Maitra S, Bhattacharjee S, Khanna P, Baidya DK. High-frequency ventilation does not provide mortality benefit in comparison with conventional lung-protective ventilation in acute respiratory distress syndrome: a meta-analysis of the randomized controlled trials. Anesthesiology. 2015;122:841–51.

    Article  Google Scholar 

  50. PIEHL MA, BROWN RS. Use of extreme position changes in acute respiratory failure. Crit Care Med. 1976;4:13–4.

    Article  CAS  Google Scholar 

  51. Broccard A, et al. Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med. 2000;28:295–303.

    Article  CAS  Google Scholar 

  52. Pelosi P, Brazzi L, Gattinoni L. Prone position in acute respiratory distress syndrome. Eur Respir J. 2002;20:1017–28.

    Article  CAS  Google Scholar 

  53. Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188:1286–93.

    Article  CAS  Google Scholar 

  54. Guérin C. Video: prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–68.

    Article  Google Scholar 

  55. Blanch L, et al. Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome. Intensive Care Med. 1997;23:1033–9.

    Article  CAS  Google Scholar 

  56. Sud S, Sud M, Friedrich JO, Adhikari NKJ. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ. 2008;178:1153–61.

    Article  Google Scholar 

  57. Gattinoni L, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345:568–73.

    Article  CAS  Google Scholar 

  58. Guérin C, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292:2379–87.

    Article  Google Scholar 

  59. Mancebo J, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:1233–9.

    Article  Google Scholar 

  60. Taccone P, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302:1977–84.

    Article  CAS  Google Scholar 

  61. Beitler JR, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med. 2014;40:332–41.

    Article  Google Scholar 

  62. Murray MJ, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2002;30:142–56.

    Article  CAS  Google Scholar 

  63. Murray MJ, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient. Crit Care Med. 2016;44:2079–103.

    Article  CAS  Google Scholar 

  64. Gainnier M, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32:113–9.

    Article  CAS  Google Scholar 

  65. Forel J-M, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34:2749–57.

    Article  CAS  Google Scholar 

  66. Testelmans D, et al. Rocuronium exacerbates mechanical ventilation-induced diaphragm dysfunction in rats. Crit Care Med. 2006;34:3018–23.

    Article  CAS  Google Scholar 

  67. Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19:274.

    Article  Google Scholar 

  68. Price DR, Mikkelsen ME, Umscheid CA, Armstrong EJ. Neuromuscular blocking agents and neuromuscular dysfunction acquired in critical illness: a systematic review and meta-analysis. Crit Care Med. 2016;44:2070–8.

    Article  CAS  Google Scholar 

  69. Papazian L, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–16.

    Article  CAS  Google Scholar 

  70. Zwissler B, et al. Inhaled prostacyclin (PGI2) versus inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med. 1996;154:1671–7.

    Article  CAS  Google Scholar 

  71. Walmrath D, et al. Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med. 1996;153:991–6.

    Article  CAS  Google Scholar 

  72. Dahlem P, van Aalderen WMC, de Neef M, Dijkgraaf MGW, Bos AP. Randomized controlled trial of aerosolized prostacyclin therapy in children with acute lung injury. Crit Care Med. 2004;32:1055–60.

    Article  Google Scholar 

  73. Rossaint R, Pison U, Gerlach H, Falke KJ. Inhaled nitric oxide: its effects on pulmonary circulation and airway smooth muscle cells. Eur Heart J. 1993;14(Suppl I):133–40.

    CAS  PubMed  Google Scholar 

  74. Benzing A, Geiger K. Inhaled nitric oxide lowers pulmonary capillary pressure and changes longitudinal distribution of pulmonary vascular resistance in patients with acute lung injury. Acta Anaesthesiol Scand. 1994;38:640–5.

    Article  CAS  Google Scholar 

  75. Payen D, Groupe d'Etude sur le NO inhale au cours de lARDS GENOA, Vallet B. Results of the French prospective multicentric randomized double-blind placebo-controlled trial on inhaled nitric oxide (NO) in ARDS. Intensive Care Med. 1999;25:S166.

    Article  Google Scholar 

  76. Lundin S, Mang H, Smithies M, Stenqvist O, Frostell C. Inhalation of nitric oxide in acute lung injury: results of a European Multicentre Study. The European Study Group of Inhaled Nitric Oxide. Intensive Care Med. 1999;25:911–9.

    Article  CAS  Google Scholar 

  77. Dellinger RP, et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med. 1998;26:15–23.

    Article  CAS  Google Scholar 

  78. Taylor RW, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291:1603–9.

    Article  CAS  Google Scholar 

  79. Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev. 2016;(66):CD002787.

    Google Scholar 

  80. Afshari A, Brok J, Møller AM, Wetterslev J. Aerosolized prostacyclin for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev. 2010;(32):CD007733.

    Google Scholar 

  81. Torbic H, et al. Inhaled epoprostenol vs inhaled nitric oxide for refractory hypoxemia in critically ill patients. J Crit Care. 2013;28:844–8.

    Article  CAS  Google Scholar 

  82. Bartlett RH, et al. Extracorporeal membrane oxygenation (ECMO) cardiopulmonary support in infancy. ASAIO J. 1976;22:80–93.

    CAS  Google Scholar 

  83. Hill JD, et al. Prolonged extracorporeal oxygenation for acute post-traumatic respiratory failure (shock-lung syndrome). Use of the Bramson membrane lung. N Engl J Med. 1972;286:629–34.

    Article  CAS  Google Scholar 

  84. Zapol WM, et al. Extracorporeal membrane oxygenation in severe acute respiratory failure. A randomized prospective study. JAMA. 1979;242:2193–6.

    Article  CAS  Google Scholar 

  85. Morris AH, et al. Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med. 1994;149:295–305.

    Article  CAS  Google Scholar 

  86. Australia and New Zealand Extracorporeal Membrane Oxygenation (ANZ ECMO) Influenza Investigators, et al. Extracorporeal membrane oxygenation for 2009 influenza A(H1N1) acute respiratory distress syndrome. JAMA. 2009;302:1888–95.

    Article  Google Scholar 

  87. Holzgraefe B, et al. Extracorporeal membrane oxygenation for pandemic H1N1 2009 respiratory failure. Minerva Anestesiol. 2010;76:1043–51.

    CAS  PubMed  Google Scholar 

  88. Choi DS, et al. Extracorporeal life support and survival after out-of-hospital cardiac arrest in a nationwide registry: a propensity score-matched analysis. Resuscitation. 2016;99:26–32.

    Article  Google Scholar 

  89. Schmidt M, et al. Mechanical ventilation during extracorporeal membrane oxygenation. Crit Care. 2014;18:203.

    Article  Google Scholar 

  90. Brodie D, Bacchetta M. Extracorporeal membrane oxygenation for ARDS in adults. N Engl J Med. 2011;365:1905–14.

    Article  CAS  Google Scholar 

  91. Schmidt M, Hodgson C, Combes A. Extracorporeal gas exchange for acute respiratory failure in adult patients: a systematic review. Crit Care. 2015;19:99.

    Article  Google Scholar 

  92. Peek GJ, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63.

    Article  Google Scholar 

  93. Vaquer S, de Haro C, Peruga P, Oliva JC, Artigas A. Systematic review and meta-analysis of complications and mortality of veno-venous extracorporeal membrane oxygenation for refractory acute respiratory distress syndrome. Ann Intensive Care. 2017;7:51.

    Article  Google Scholar 

  94. Bein T, et al. A new pumpless extracorporeal interventional lung assist in critical hypoxemia/hypercapnia. Crit Care Med. 2006;34:1372–7.

    Article  Google Scholar 

  95. Bein T, et al. Lower tidal volume strategy (≈3 ml/kg) combined with extracorporeal CO2 removal versus ‘conventional’ protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med. 2013;39:847–56.

    Article  Google Scholar 

  96. Wong JK, et al. Cannulation-related complications on Veno-arterial extracorporeal membrane oxygenation: prevalence and effect on mortality. Artif Organs. 2017;65:e7.

    Google Scholar 

  97. Biffi S, et al. Infections during extracorporeal membrane oxygenation: epidemiology, risk factors, pathogenesis and prevention. Int J Antimicrob Agents. 2017;50:9–16.

    Article  CAS  Google Scholar 

  98. Lorusso R, et al. Neurologic injury in adults supported with Veno-venous extracorporeal membrane oxygenation for respiratory failure: findings from the extracorporeal life support organization database. Crit Care Med. 2017;1. https://doi.org/10.1097/CCM.0000000000002502.

  99. Thiagarajan RR, et al. Extracorporeal Life Support Organization Registry International Report 2016. ASAIO J. 2017;63:60–7.

    Article  Google Scholar 

  100. Zwischenberger JB, Lynch JE. Will CESAR answer the adult ECMO debate? Lancet. 2009;374:1307–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles H. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parsons, C.S., Cook, C.H. (2018). Advanced Modalities and Rescue Therapies for Severe Respiratory Failure. In: Salim, A., Brown, C., Inaba, K., Martin, M. (eds) Surgical Critical Care Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-71712-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71712-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71711-1

  • Online ISBN: 978-3-319-71712-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics