Biomimetics pp 199-248 | Cite as

Fabrication and Characterization of Mechanically Durable Superhydrophobic Surfaces

  • Bharat BhushanEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)


Superhydrophobic surfaces with low contact angle hysteresis can be used for water-repellency, self-cleaning/low adhesion, drag reduction in fluid flow, energy conservation, and energy conversion.


  1. Balu, B., Breedveld, V., and Hess, D. W. (2008), “Fabrication of Roll-off and Sticky Superhydrophobic Cellulose Surfaces via Plasma Processing,” Langmuir 24, 4785–4790.CrossRefGoogle Scholar
  2. Bhushan, B. (2009), “Biomimetics: Lessons from Nature – an Overview,” Phil. Trans. R. Soc. A 367, 1445–1486.Google Scholar
  3. Bhushan, B. (2013a), Principles and Applications of Tribology, second ed., Wiley, New York.Google Scholar
  4. Bhushan, B. (2013b), Introduction to Tribology, second ed., Wiley, New York.CrossRefGoogle Scholar
  5. Bhushan, B. (2017a), Springer Handbook of Nanotechnology, fourth ed., Springer International, Cham, Switzerland.Google Scholar
  6. Bhushan B. (2017b), Nanotribology and Nanomechanics – An Introduction, fourth ed., Springer International, Cham, Switzerland.Google Scholar
  7. Bhushan, B. and Gupta, B. K. (1991), Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill, New York.Google Scholar
  8. Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.CrossRefGoogle Scholar
  9. Bhushan, B., Jung, Y. C., and Koch, K. (2009), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631–1672.CrossRefGoogle Scholar
  10. Bjørnsen, G., Henriksen, L., Ulvensøen, J. H., and Roots, J. (2010), “Plasma Etching of Different Polydimethylsiloxane Elastomers, Effects from Process Parameters and Elastomer Composition,” Microelectron. Eng. 87, 67–71.CrossRefGoogle Scholar
  11. Bodas, D. and Khan-Malek, C. (2007), “Hydrophilization and Hydrophobic Recovery of PDMS by Oxygen Plasma and Chemical Treatment – An SEM Investigation,” Sensors and Actuators B 123, 368–373.CrossRefGoogle Scholar
  12. Burton, Z. and Bhushan, B. (2006), “Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces,” Ultramicroscopy 106, 709–719.CrossRefGoogle Scholar
  13. Callister, W. D. (2000), Materials Science and Engineering – An Introduction, fifth ed., Wiley, New York.Google Scholar
  14. Chang, C. M. (1994), Surface Modification and Characterization of Polymers, Hanser Publishers, New York, N.Y.Google Scholar
  15. Chen, X. H., Chen, C. S., Xiao, H. N., Liu, H. B., Zhou, L. P., Li, S. L., and Zhang, G. (2006), “Dry Friction and Wear Characteristics of Nickel/Carbon Nanotube Electroless Composite Deposits,” Tribol. Int. 39, 22–28.CrossRefGoogle Scholar
  16. Cheng, S. and Wu, Z. (2010), “Microfluidic Stretchable RF Electronics,” Lab Chip 10, 3227–3234.CrossRefGoogle Scholar
  17. Cho, Y.-S., Yi, G.-R., Hong, J.-J., Jang, S. H., and Yang, S.-M. (2006), “Colloidal Indium Tin Oxide Nanoparticles for Transparent and Conductive Films,” Thin Solid Films 515, 1864–1871.CrossRefGoogle Scholar
  18. Dresselhaus, M. S., Dresselhaus, G., and Avouris, Ph., eds. (2000), Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer, Heidelberg, Germany.Google Scholar
  19. Ebert, D. and Bhushan, B. (2012a), “Durable Lotus-Effect Surfaces with Hierarchical Structure Using Micro- and Nanosized Hydrophobic Silica Particles,” J. Colloid Interface Sci. 368, 584–591.CrossRefGoogle Scholar
  20. Ebert, D. and Bhushan, B. (2012b), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles,” Langmuir 28, 11391–11399.CrossRefGoogle Scholar
  21. Ebert, D. and Bhushan, B. (2016), “Transparent, Superhydrophobic and Wear-resistant Surfaces Using Deep Reactive Ion Etching on PDMS Substrates,” J. Colloid Interface Sci. 481, 82–90.CrossRefGoogle Scholar
  22. Ederth, J., Heszler, P., Hultåker, A., Niklasson, G. A., and Granqvist, C. G., (2003), “Indium Tin Oxide Films Made from Nanoparticles: Models for the Optical and Electrical Properties,” Thin Solid Films 445, 199–206.CrossRefGoogle Scholar
  23. Englert, B. C., Xiu, Y., and Wong, C. P. (2006), “Deposition and Surface Treatment of Microparticles to Produce Lotus-Effect Surface,” 11th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, March 15–17, Atlanta, GA, 73–78.Google Scholar
  24. Garra, J., Long, T., Currie, J., Schneider, T., White, R., and Paranjape, M. (2002), “Dry Etching of Polydimethylsiloxane for Microfluidics Systems,” J. Vac. Sci. Technol. A 20, 975–982.CrossRefGoogle Scholar
  25. Gonzalez, M., Axisa, F., Bossuyt, F., Hsu, Y., Vandevelde, B., and Vanfleteren, J. (2009), “Design and Performance of Metal Conductors for Stretchable Electronic Circuits,” Circuit World 35, 22–30.CrossRefGoogle Scholar
  26. Hamberg, I. and Granqvist, C. G. (1984), “Band-gap Widening in Heavily Sn-doped In2O3,” Phys. Rev. B 30, 3240–3249.Google Scholar
  27. He, Z., Ma, M., Lan, X., Chen, F., Wang, K., Deng, H., Zhang, Q., and Fu, Q. (2011), “Fabrication of a Transparent Superamphiphobic Coating with Improved Stability,” Soft Matter 7, 6435–6443.CrossRefGoogle Scholar
  28. Hwang, S., Oh, D., Jung, P., Lee, S., Go, J., Kim, J., Hwang, K., and Ko, J. (2009), “Dry Etching of Polydimethylsiloxane using Microwave Plasma,” J. Micromech. Microeng. 19, 095010.CrossRefGoogle Scholar
  29. Johnston, I. D., McCluskey, D. K., Tan, C. K. L., and Tracey, M. C. (2014), “Mechanical Characterization of Bulk Sylgard 184 for Microfluidics and Microengineering,” J. Micromech. Microeng. 24, 035017.CrossRefGoogle Scholar
  30. Jung, Y. C. and Bhushan, B. (2009), “Mechanically Durable CNT-Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag,” ACS Nano 3, 4155–4163.CrossRefGoogle Scholar
  31. Karunakaran, R. G., Lu, C.-H., Zhang, Z., and Yang, S. (2011), “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (≤100 nm),” Langmuir 27, 4594–4602.CrossRefGoogle Scholar
  32. Kim, H., Gilmore, C. M., Pique, A., Horowitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H., and Chrisey, D. B. (1999), “Electrical, Optical, and Structural Properties of Indium-Tin-Oxide Thin Films for Organic Light Emitting Devices,” J. Appl. Phys. 86, 6451–6461.CrossRefGoogle Scholar
  33. Kim, J., Chaudhury, M., and Owen, M. J. (2000), “Hydrophobic Recovery of Polydimethylsiloxane Elastomer Exposed to Partial Electrical Discharge,” J. Colloid Interface Sci. 226, 231–236.CrossRefGoogle Scholar
  34. Kim, M., Moon, B.-U., and Hidrovo, C. H. (2013), “Enhancement of the Thermo-mechanical Properties of PDMS Molds for the Hot Embossing of PMMA Microfluidic Devices,” J. Micromech. Microeng. 23, 095024.CrossRefGoogle Scholar
  35. Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W. (2009), “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion,” Soft Matter 5, 1386–1393.CrossRefGoogle Scholar
  36. Kucheyev, S. O., Bradby, J. E., Williams, J. S., and Jagadish, C. (2002), “Mechanical Deformation of Single-crystal ZnO,” J. Appl. Phys. 80, 956–958.CrossRefGoogle Scholar
  37. Ling, X. Y., Phang, I. Y., Vancso, G. J., Huskens, J., and Reinhoudt, D. N. (2009), “Stable and Transparent Superhydrophobic Nanoparticle Films,” Langmuir 25, 3260–3263.CrossRefGoogle Scholar
  38. Liu, Y., Chen, X., and Xin, J. H. (2006), “Super-Hydrophobic Surfaces from a Simple Coating Method: A Bionic Nanoengineering Approach,” Nanotechnology 17, 3259–3263.CrossRefGoogle Scholar
  39. Malitson, H. (1965), “Inter specimen Comparison of the Refractive Index of Fused Silica,” J. Opt. Soc. America 55, 1205–1209.Google Scholar
  40. Manca, M., Cortese, B., Viola, I., Aricò, A., Cingolani, R., and Gigli, G. (2008), “Influence of Chemistry and Topology Effects on Superhydrophobic CF4-Plasma-Treated Poly(dimethylsiloxane) (PDMS),” Langmuir 24, 1833–1843.CrossRefGoogle Scholar
  41. Manca, M., Cannavale, A., De Marco, L., Aricò, A. S., Cingolani, R., and Gigli, G. (2009), “Durable Superhydrophobic and Antireflective Surfaces by Trimethylsilanized Silica Nanoparticles-Based Sol-Gel Processing,” Langmuir 25, 6357–6362.CrossRefGoogle Scholar
  42. Martin, S. and Bhushan, B. (2017), “Transparent, Wear-resistant, Superhydrophobic and Superoleophobic Poly(dimethylsiloxane) (PDMS) Surfaces,” J. Colloid Interface Sci., 488, 118–126.CrossRefGoogle Scholar
  43. McClain, M., LaPlaca, M., and Allen, M. (2009), “Spun-cast Micromolding for Etchless Micropatterning of Electrically Functional PDMS Structures,” J. Micromech. Microeng. 19, 107002.CrossRefGoogle Scholar
  44. Meyyappan, M. (2005), Carbon Nanotubes – Science and Applications, CRC Press, Boca Raton, FL.Google Scholar
  45. Ming, W., Wu, D., van Benthem, R., and de With, G. (2005), “Superhydrophobic Films from Raspberry-Like Particles,” Nano Lett. 5, 2298–2301.CrossRefGoogle Scholar
  46. Moustaghfir, A., Tomasella, E., Rivaton, A., Mailhot, B., Jacquet, M., Gardette, J. L., and Cellier, J. (2004), “Sputtered Zinc Oxide Coatings: Structural Study and Application to the Photoreception of the Polycarbonate,” Surf. Coatings Technol. 180181, 642–645.Google Scholar
  47. Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. (1999), “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate,” Adv. Mater. 11, 1365–1368.CrossRefGoogle Scholar
  48. Natsume, Y. and Sakata, H. (2000), “Zinc Oxide Films Prepared by Sol-gel Spin-coating,” Thin Solid Films 372, 30–36.CrossRefGoogle Scholar
  49. Nishimoto, S., Kubo, A., Nohara, K., Zhang, X., Taneichi, N., Okui, T., Liu, Z., Nakata, K., Sakai, H., Murakami, T., Abe, M., Komine, T., and Fujishima, A. (2009), “TiO2-based Superhydrophobic-Superhydrophilic Patterns: Fabrication via an Ink-jet Technique and Application in Offset Printing,” Appl. Surf. Sci. 255, 6221–6225.CrossRefGoogle Scholar
  50. Noh, J. H., Han, H. S., Lee, S., Kim, D. H., Park, J. H., Park, S., Kim, J. Y., Jung, H. S., and Hong, K. S. (2010), “A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices,” J. Phys. Chem. C 114, 13867–13871.CrossRefGoogle Scholar
  51. Obeso, C. G., Sousa, M. P., Song, W., Rodriguez-Perez, M. A., Bhushan, B., and Mano, J. F. (2013), “Modification of Paper Using Polyhydroxybutyrate to Obtain Biomimetic Superhydrophobic Substrates,” Colloids Surf. A 416, 51–55.CrossRefGoogle Scholar
  52. Park, T.-Y., Choi, Y.-S., Kang, J.-W., Jeong, J.-H., Park, S.-J., Jeon, D. M., Kim, J. W., and Kim, Y. C. (2010), “Enhanced Optical Power and Low Forward Voltage of GaN-based Light-Emitting Diodes with Ga-doped ZnO Transparent Conducting Layer,” Appl. Phys. Lett. 96, 051124.CrossRefGoogle Scholar
  53. Schneider, P. M. and Fowler, W. B. (1976), “Band Structure and Optical Properties of Silicon Dioxide,” Phys. Rev. Lett. 36, 425–428.CrossRefGoogle Scholar
  54. Shackelford, J. F. and Alexander, W., eds. (2001), CRC Materials Science and Engineering Handbook, third ed., CRC Press, Boca Raton, FL.Google Scholar
  55. Srikant, V. and Clarke, D. (1998), “On the Optical Band Gap of Zinc Oxide,” J. Appl. Phys. 83, 5447–5451.CrossRefGoogle Scholar
  56. Tropmann, A., Tanguy, L., Koltay, P., Zengerle, R., and Riegger, L. (2012), “Completely Superhydrophobic PDMS Surfaces for Microfluidics,” Langmuir 28, 8292–8295.CrossRefGoogle Scholar
  57. Tserepi, A., Vlachopoulou, M., and Gogolides, E. (2006), “Nanotexturing of Poly(dimethylsiloxane) in Plasmas for Creating Robust Super-hydrophobic Surfaces,” Nanotechnology 17, 3977–3983.CrossRefGoogle Scholar
  58. Vila, M., Cáceres, D., and Prieto, C. (2003), “Mechanical Properties of Sputtered Silicon Nitride Thin Films,” J Appl. Phys. 94, 7868–7873.CrossRefGoogle Scholar
  59. Wong, E. W., Sheehan, P. E., and Lieber, C. M. (1997), “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971–1975.CrossRefGoogle Scholar
  60. Yang, H. and Deng, Y. (2008), “Preparation and Physical Properties of Superhydrophobic Papers,” J. Colloid Interface Sci., 325, 588–593.CrossRefGoogle Scholar
  61. Yang, Y., Sun, X. W., Chen, B. J., Xu, C. X., Chen, T. P., Sun, C. Q., Tay, B. K., and Sun, Z. (2006), “Refractive Indices of Textured Indium Tin Oxide and Zinc Oxide Thin Films,” Thin Solid Films 510, 95–101.CrossRefGoogle Scholar
  62. Zeng, K., Zhu, F., Hu, J., Shen, L., Zhang, K., and Gong, H. (2003), “Investigation of Mechanical Properties of Transparent Conducting Oxide Thin Films,” Thin Solid Films 443, 60–65.CrossRefGoogle Scholar
  63. Zhang, Y. Y., Wang, C. M., and Tan, V. B. C. (2008), “Examining the Effects of Wall Numbers on Buckling Behavior and Mechanical Properties of Multiwalled Carbon Nanotubes via Molecular Dynamics Simulations,” J. Appl. Phys. 103, 053505.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations