Skip to main content

Strategies for Micropatterned, Nanopatterned, and Hierarchically Structured Lotus-like Surfaces

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

  • 1877 Accesses

Abstract

It has been demonstrated experimentally that roughness changes contact angle (CA) in accordance with the Wenzel model or the Cassie-Baxter model, depending upon whether the surface is hydrophilic or hydrophobic (Bhushan and Jung 2011). Yost et al. (1995) found that roughness enhances wetting of a copper surface with Sn–Pb eutectic solder, which has a contact angle of 15°–20° for a smooth surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson, A. V. (1990), Physical Chemistry of Surfaces, Wiley, New York.

    Google Scholar 

  • Bartolo, D., Bouamrirene, F., Verneuil, E., Buguin, A., Silberzan, P., and Moulinet, S. (2006), “Bouncing or Sticky Droplets: Impalement Transitions on Superhydrophobic Micropatterned Surfaces,” Europhys. Lett. 74, 299–305.

    Article  CAS  Google Scholar 

  • Bhushan, B. (2003), “Adhesion and Stiction: Mechanisms, Measurement Techniques and Methods for Reduction,” J. Vac. Sci. Technol. B 21, 2262–2296.

    Article  CAS  Google Scholar 

  • Bhushan, B. (2013a), Principles and Applications of Tribology, second ed., Wiley, New York.

    Google Scholar 

  • Bhushan, B. (2013b), Introduction to Tribology, second ed., Wiley, New York.

    Book  Google Scholar 

  • Bhushan, B. (2017a), Springer Handbook of Nanotechnology, fourth ed., Springer International, Switzerland.

    Google Scholar 

  • Bhushan, B. (2017b), Nanotribology and Nanomechanics – An Introduction, fourth ed., Springer International, Switzerland.

    Google Scholar 

  • Bhushan, B. and Blackman, G. S. (1991), “Atomic Force Microscopy of Magnetic Rigid Disks and Sliders and Its Applications to Tribology,” ASME J. Tribol. 113, 452–457.

    Article  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2006), “Micro and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surface,” Nanotechnology 17, 2758–2772.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2007), “Wetting Study of Patterned Surfaces for Superhydrophobicity,” Ultramicroscopy 107, 1033–1041.

    Article  CAS  Google Scholar 

  • Bhushan, B., Nosonovsky M., and Jung, Y. C. (2007), “Towards Optimization of Patterned Superhydrophobic Surfaces” J. R. Soc. Interface 4, 643–648.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2008), “Wetting, Adhesion and Friction of Superhydrophobic and Hydrophilic Leaves and Fabricated Micro/nanopatterned Surfaces,” J. Phys.: Condens. Matter 20, 225010.

    Google Scholar 

  • Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.

    Article  CAS  Google Scholar 

  • Bhushan, B., Hansford, D., and Lee, K. K. (2006), “Surface Modification of Silicon and Polydimethylsiloxane Surfaces with Vapor-Phase-Deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices,” J. Vac. Sci. Technol. A 24, 1197–1202.

    Article  CAS  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2008a), “Nanostructures for Superhydrophobicity and Low Adhesion,” Soft Matter 4, 1799–1804.

    Article  CAS  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2008b), “Biomimetic Hierarchical Structure for Self-Cleaning,” Appl. Phys. Lett. 93, 093101.

    Article  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009a), “Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces,” Langmuir 25, 3240–3248.

    Article  CAS  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Koch, K. (2009b), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631–1672.

    Article  CAS  Google Scholar 

  • Bhushan, B., Jung, Y. C., Niemietz, A., and Koch, K. (2009c), “Lotus-like Biomimetic Hierarchical Structures Developed by the Self-assembly of Tubular Plant Waxes,” Langmuir 25, 1659–1666.

    Article  CAS  Google Scholar 

  • Bhushan, B., Koch, K., and Jung, Y. C. (2009d), “Fabrication and Characterization of the Hierarchical Structure for Superhydrophobicity,” Ultramicroscopy 109, 1029–1034.

    Article  CAS  Google Scholar 

  • Bhushan, B., Jung, Y. C., and Nosonovsky, M. (2012), “Hierarchical Structures for Superhydrophobic Surfaces and Methods of Making,” U.S. Patent No. 8,137,751 B2, March 20.

    Google Scholar 

  • Bormashenko, E., Pogreb, R., Whyman, G., and Erlich, M. (2007), “Cassie-Wenzel Wetting Transition in Vibrated Drops Deposited on the Rough Surfaces: Is Dynamic Cassie-Wenzel Transition 2D or 1D Affair?” Langmuir 23, 6501–6503.

    Google Scholar 

  • Bourges-Monnier, C. and Shanahan, M. E. R. (1995), “Influence of Evaporation on Contact Angle,” Langmuir 11, 2820–2829.

    Article  CAS  Google Scholar 

  • Brugnara, M., Della Volpe, C., Siboni, S., and Zeni, D, (2006), “Contact Angle Analysis on Polymethylmethacrylate and Commercial Wax by Using an Environmental Scanning Electron Microscope,” Scanning 28, 267–273.

    Article  Google Scholar 

  • Bunshah, R. F. (1994), Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications, Applied Science Publishers, Westwood, New Jersey.

    Google Scholar 

  • Burton, Z. and Bhushan, B. (2005), “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems,” Nano Lett. 5, 1607–1613.

    Article  CAS  Google Scholar 

  • Burton, Z. and Bhushan, B. (2006), “Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces,” Ultramicroscopy 106, 709–719.

    Article  CAS  Google Scholar 

  • Celestini, F. and Kofman, R. (2006), “Vibration of Submillimeter-size Supported Droplets,” Phys. Rev. E 73, 041602.

    Google Scholar 

  • Checco, A., Guenoun, P., and Daillant, J. (2003), “Nonlinear Dependence of the Contact Angle of Nanodroplets on Contact Line Curvatures,” Phys. Rev. Lett. 91, 186101.

    Google Scholar 

  • Chen, N. and Bhushan, B. (2006), “Atomic Force Microscopy Studies of Conditioner Thickness Distribution and Binding Interactions on the Hair Surface,” J. Microsc. 221, 203–215.

    Article  CAS  Google Scholar 

  • Chen, Y. L., Helm, C. A., and Israelachvili, J. N. (1991), “Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces,” J. Phys. Chem. 95, 10736–10747.

    Article  CAS  Google Scholar 

  • Choi, S. E., Yoo, P. J., Baek, S. J., Kim, T. W., and Lee, H. H. (2004), “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7745.

    Article  CAS  Google Scholar 

  • Danilatos, G. D. and Brancik, J. V. (1986), “Observation of Liquid Transport in the ESEM,” Proc. 44th Annual Meeting Electron Microscopy Soc. of America (ed. G. W. Bailey), pp. 678–679, San Francisco Press, San Francisco, CA.

    Google Scholar 

  • Dorset, D. L., Pangborn, W. A., and Hancock, A. J., (1983), “Epitaxial Crystallization of Alkane Chain Lipids for Electron Diffraction Analysis,” J. Biochem. Biophys. Meth. 8, 29–40.

    Article  CAS  Google Scholar 

  • Erbil, H. Y., McHale, G., and Newton, M. I. (2002), “Drop Evaporation on Solid Surfaces: Constant Contact Angle Mode,” Langmuir 18, 2636–2641.

    Article  CAS  Google Scholar 

  • Erbil, H. Y., Demirel, A. L., and Avci, Y. (2003), “Transformation of a Simple Plastic into a Superhydrophobic Surface,” Science 299, 1377–1380.

    Google Scholar 

  • Good, R. J. (1952), “A Thermodynamic Derivation of Wenzel’s Modification of Young’s Equation for Contact Angles; Together with a Theory of Hysteresis,” J. Am. Chem. Soc. 74, 5041–5042.

    Article  CAS  Google Scholar 

  • Israelachvili, J. N. (1992), Intermolecular and Surface Forces, second edition, Academic Press, London, U. K.

    Google Scholar 

  • Joanny, J. F. and de Gennes, P. G. (1984), “A Model for Contact Angle Hysteresis,” J. Chem. Phys. 81, 552–562.

    Article  CAS  Google Scholar 

  • Johnson, R. E. and Dettre, R. H. (1964), “Contact Angle Hysteresis,” Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser. (ed. F. M. Fowkes), Vol. 43, pp. 112–135, American Chemical Society, Washington, D. C.

    Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2006), “Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity,” Nanotechnology 17, 4970–4980.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2007), “Wetting Transition of Water Droplets on Superhydrophobic Patterned Surfaces,” Scripta Mater. 57, 1057–1060.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008a), “Wetting Behavior during Evaporation and Condensation of Water Microdroplets on Superhydrophobic Patterned Surfaces” J. Micros. 229, 127–140.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008b), “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces,” Langmuir 24, 6262–6269.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2008c), “Technique to Measure Contact Angle of Micro/Nanodroplets using Atomic Force Microscopy,” J. Vac. Sci. Technol. A 26, 777–782.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2009), “Dynamic Effects Induced Transition of Droplets on Biomimetic Superhydrophobic Surfaces,” Langmuir 25, 9208–9218.

    Article  CAS  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2010), “Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows,” J. Phys.: Condens. Matter 22, 035104.

    Google Scholar 

  • Kasai, T., Bhushan, B., Kulik, G., Barbieri, L., and Hoffmann, P. (2005), “Micro/Nanotribological Study of Perfluorosilane SAMs for Antistiction and Low Wear,” J. Vac. Sci. Technol. B 23, 995–1003.

    Article  CAS  Google Scholar 

  • Koch, K., Dommisse, A., and Barthlott, W. (2006a), “Chemistry and Crystal Growth of Plant Wax Tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) Leaves on Technical Substrates,” Crystl. Growth Des. 6, 2571–2578.

    Article  CAS  Google Scholar 

  • Koch, K., Barthlott, W., Koch, S., Hommes, A., Wandelt, K., Mamdouh, W., De-Feyter, S. and Broekmann, P. (2006b), “Structural Analysis of Wheat Wax (Triticum aestivum, c.v. ‘Naturastar’ L.): from the Molecular Level to Three Dimensional Crystals,” Planta 223, 258–270.

    Article  Google Scholar 

  • Koch, K., Dommisse, A., Barthlott, W., and Gorb, S. (2007), “The Use of Plant Waxes as Templates for Micro- and Nanopatterning of Surfaces,” Acta Biomat. 3, 905–909.

    Article  CAS  Google Scholar 

  • Koch, K., Schulte, A. J., Fischer, A., Gorb, S. N., and Barthlott, W. (2008), “A Fast and Low-cost Replication Technique for Nano- and High-Aspect-Ratio Structures of Biological and Artificial Materials,” Bioinsp. Biomim. 3, 046002.

    Google Scholar 

  • Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W. (2009), “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion,” Soft Matter 5, 1386–1393.

    Article  CAS  Google Scholar 

  • Lafuma, A. and Quéré, D. (2003), “Superhydrophobic States,” Nat. Mater. 2, 457–460.

    Article  CAS  Google Scholar 

  • Lamb, H. (1932), Hydrodynamics, Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Lee, S. -W. and Laibinis, P. E. (2000), “Directed Movement of Liquids on Patterned Surfaces Using Noncovalent Molecular Adsorption,” J. Am. Chem. Soc. 122, 5395–5396.

    Article  CAS  Google Scholar 

  • Lodge, R. A. and Bhushan, B. (2006), “Surface Characterization of Human Hair using Tapping Mode Atomic Force Microscopy and Measurement of Conditioner Thickness Distribution,” J. Vac. Sci. Technol. A 24, 1258–1269.

    Article  CAS  Google Scholar 

  • McHale, G., Aqil, S., Shirtcliffe, N. J., Newton, M. I., and Erbil, H. Y. (2005), “Analysis of Droplet Evaporation on a Superhydrophobic Surface,” Langmuir 21, 11053–11060.

    Article  CAS  Google Scholar 

  • Neinhuis, C., and Barthlott, W. (1997), “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Annals of Botany 79, 667–677.

    Article  Google Scholar 

  • Niemietz, A., Wandelt, K., Barthlott, W., and Koch, K. (2009), “Thermal Evaporation of Multi-Component Waxes and Thermally Activated Formation of Nano-Tubules for Superhydrophobic Surfaces,” Prog. Org. Coat. 66, 221–227.

    Article  CAS  Google Scholar 

  • Noblin, X., Buguin, A., and Brochard-Wyart, F. (2004), “Vibrated Sessile Drops: Transition between Pinned and Mobile Contact Line Oscillations,” Eur. Phys. J. E 14. 395–404.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2005), “Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Microsyst. Technol. 11, 535–549.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007a), “Multiscale Friction Mechanisms and Hierarchical Surfaces in Nano- and Bio-Tribology,” Mater. Sci. Eng.:R 58, 162–193.

    Article  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007b), “Hierarchical Roughness Makes Superhydrophobic Surfaces Stable,” Microelectronic Eng. 84, 382–386.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007c), “Biomimetic Superhydrophobic Surfaces: Multiscale Approach,” Nano Lett. 7, 2633–2637.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2007d), “Hierarchical Roughness Optimization for Biomimetic Superhydrophobic Surfaces,” Ultramicroscopy 107, 969–979.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008a), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer-Verlag, Heidelberg, Germany.

    Book  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008b), “Roughness-Induced Superhydrophobicity: A Way to Design Non-Adhesive Surfaces,” J. Phys.: Condens. Matter 20, 225009.

    Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008c), “Patterned Non-Adhesive Surfaces: Superhydrophobicity and Wetting Regime Transitions,” Langmuir 24, 1525–1533.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008d), “Capillary Effects and Instabilities in Nanocontacts,” Ultramicroscopy 108, 1181–1185.

    Article  CAS  Google Scholar 

  • Nosonovsky, M. and Bhushan, B. (2008e), “Energy Transitions in Superhydrophobicity: Low Adhesion, Easy Flow and Bouncing,” J. Phys.: Condens. Matter 20, 395005.

    Google Scholar 

  • Palacio, M. and Bhushan, B. (2010), “Normal and Lateral Force Calibration Techniques for AFM Cantilevers,” Crit. Rev. Solid State Mater. Sci. 35, 73–104.

    Article  CAS  Google Scholar 

  • Pompe, T. and Herminghaus, S. (2000), “Three-Phase Contact Line Energetics from Nanoscale Liquid Surface Topographies,” Phys. Rev. Lett. 85, 1930–1933.

    Article  CAS  Google Scholar 

  • Quere, D. (2004), “Surface Wetting Model Droplets,” Nat. Mater. 3, 79–80.

    Article  Google Scholar 

  • Reyssat, M., Pepin, A., Marty, F., Chen, Y., and Quere, D. (2006), “Bouncing Transitions on Microtextured Materials,” Europhys. Lett. 74, 306–312.

    Article  CAS  Google Scholar 

  • Richard, D., Clanet, C., and Quere, D. (2002), “Contact Time of a Bouncing Drop,” Nature 417, 811.

    Article  CAS  Google Scholar 

  • Rowan, S. M., Newton, M. I., and McHale, G. (1995), “Evaporation of Microdroplets and the Wetting of Solid Surfaces,” J. Phys. Chem. 99, 13268–13271.

    Article  CAS  Google Scholar 

  • Semal, S., Blake, T. D., Geskin, V., de Ruijter, M. L., Castelein, G., and De Coninck, J. (1999), “Influence of Surface Roughness on Wetting Dynamics,” Langmuir 15, 8765–8770.

    Article  CAS  Google Scholar 

  • Shibuichi, S., Onda, T., Satoh, N., and Tsujii, K. (1996), “Super-Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem. 100, 19512–19517.

    Article  CAS  Google Scholar 

  • Stelmashenko, N. A., Craven, J. P., Donald, A. M., Terentjev, E. M., and Thiel, B. L. (2001), “Topographic Contrast of Partially Wetting Water Droplets in Environmental Scanning Electron Microscopy,” J. Micros. 204, 172–183.

    Google Scholar 

  • van Dijk, A. I. J. M., Bruijnzeel, L. A., and Rosewell, C. J. (2002), “Rainfall Intensity–Kinetic Energy Relationships: A Critical Literature Appraisal,” J. Hydrology 261, 1–23.

    Google Scholar 

  • Yost, F. G., Michael, J. R., and Eisenmann, E. T. (1995), “Extensive Wetting Due to Roughness,” Acta Metall. Mater. 45, 299–305.

    Article  CAS  Google Scholar 

  • Zhang, X., Tan, S., Zhao, N., Guo, X., Zhang, X., Zhang, Y., and Xu, J. (2006), “Evaporation of Sessile Water Droplets on Superhydrophobic Natural Lotus and Biomimetic Polymer Surfaces,” Chem. Phys. Chem. 7, 2067–2070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Strategies for Micropatterned, Nanopatterned, and Hierarchically Structured Lotus-like Surfaces. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_6

Download citation

Publish with us

Policies and ethics