Advertisement

Biomimetics pp 109-119 | Cite as

Nanofabrication Techniques Used for Superhydrophobic Surfaces

  • Bharat BhushanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)

Abstract

Nanofabrication of Lotus-like superhydrophobic surfaces has been an area of active research since the mid-1990s. Various nanofabrication techniques are used for micro- and nanostructure fabrication which include lithography, etching, deformation, and deposition.

References

  1. Abdelsalam, M. E., Bartlett, P. N., Kelf, T., and Baumberg, J. (2005), “Wetting of Regularly Structured Gold Surfaces,” Langmuir 21, 1753–1757.CrossRefGoogle Scholar
  2. Bhushan, B. (2009), “Biomimetics: Lessons from Nature-An Overview,” Phil. Trans. R. Soc. A 367, 1445–1486.CrossRefGoogle Scholar
  3. Bhushan, B. (2017), Springer Handbook of Nanotechnology, fourth ed., Springer International, Cham, Switzerland.Google Scholar
  4. Bhushan, B. and Jung, Y. C. (2007), “Wetting Study of Patterned Surfaces for Superhydrophobicity,” Ultramicroscopy 107, 1033–1041.CrossRefGoogle Scholar
  5. Bhushan, B. and Lee, H. (2012), “Fabrication and Characterization of Multi-level Hierarchical Surfaces,” Faraday Discuss. 156, 235–241.CrossRefGoogle Scholar
  6. Bhushan, B., Koch, K., and Jung, Y. C. (2008a), “Nanostructures for Superhydrophobicity and Low Adhesion,” Soft Matter 4, 1799–1804.CrossRefGoogle Scholar
  7. Bhushan, B., Koch, K., and Jung, Y. C. (2008b), “Biomimetic Hierarchical Structure for Self-Cleaning,” Appl. Phys. Lett. 93, 093101.CrossRefGoogle Scholar
  8. Bhushan, B., Jung, Y. C., Niemietz, A., and Koch, K. (2009a), “Lotus-like Biomimetic Hierarchical Structures Developed by the Self-assembly of Tubular Plant Waxes,” Langmuir 25, 1659–1666.CrossRefGoogle Scholar
  9. Bhushan, B., Koch, K., and Jung, Y. C. (2009b), “Fabrication and Characterization of the Hierarchical Structure for Superhydrophobicity,” Ultramicroscopy 109, 1029–1034.CrossRefGoogle Scholar
  10. Bormashenko, E., Stein, T., Whyman, G., Bormashenko, Y., and Pogreb, E. (2006), “Wetting Properties of the Multiscaled Nanostructured Polymer and Metallic Superhydrophobic Surfaces,” Langmuir 22, 9982–9985.CrossRefGoogle Scholar
  11. Cappella, B. and Bonaccurso, E. (2007), “Solvent-Assisted Nanolithography on Polystyrene Surfaces using the Atomic Force Microscope,” Nanotechnology 18, 155307.CrossRefGoogle Scholar
  12. Celia, E., Darmanin, T., de Givenchy, E. T., Amigoni, S., and Guittard, F. (2013), “Recent Advances in Designing Superhydrophobic Surfaces,” J. Colloid Interface Sci. 402, 1–18.CrossRefGoogle Scholar
  13. Chiou, N., Lu, C., Guan, J., Lee, L. J., and Epstein, A. J. (2007), “Growth and Alignment of Polyaniline Nanofibres with Superhydrophobic, Superhydrophilic and Other Properties,” Nature Nanotechnol. 2, 354–357.CrossRefGoogle Scholar
  14. Chong, M. A. S., Zheng, Y. B., Gao, H., and Tan, L. K. (2006), “Combinational Template-Assisted Fabrication of Hierarchically Ordered Nanowire Arrays on Substrates for Device Applications,” Appl. Phys. Lett. 89, 233104.CrossRefGoogle Scholar
  15. Cortese, B., Amone, S. D., Manca, M., Viola, I., Cingolani, R., and Gigli, G. (2008), “Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces,” Langmuir 24, 2712–2718.CrossRefGoogle Scholar
  16. Coulson, S. R., Woodward, I., Badyal, J. P. S., Brewer, S. A., and Willis, C. (2000), “Super-Repellent Composite Fluoropolymer Surfaces,” J. Phys. Chem. B 104, 8836–8840.CrossRefGoogle Scholar
  17. Del Campo, A. and Greiner, C. (2007), “SU-8: a Photoresist for High-Aspect-Ratio and 3D Submicron Lithography,” J. Micromech. Microeng. 17, R81–R95.CrossRefGoogle Scholar
  18. Ebert, D. and Bhushan, B. (2012a), “Durable Lotus-Effect Surfaces with Hierarchical Structure Using Micro- and Nanosized Hydrophobic Silica Particles,” J. Colloid Interface Sci. 368, 584–591.CrossRefGoogle Scholar
  19. Ebert, D. and Bhushan, B. (2012b), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates using SiO2, ZnO, and ITO Nanoparticles,” Langmuir 28, 11391–11399.CrossRefGoogle Scholar
  20. Ebert, D. and Bhushan, B. (2016), “Transparent, Superhydrophobic, and Wear-Resistant Surfaces Using Deep Reactive Ion Etching on PDMS Substrates,” J. Colloid Interface. Sci. 481, 82–90.CrossRefGoogle Scholar
  21. Feng, X. J., Feng, L., Jin, M. H., Zhai, J., Jiang, L., Zhu, D. B. (2004), “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” J. Am. Chem. Soc. 126, 62–63.CrossRefGoogle Scholar
  22. Fürstner, R., Barthlott, W., Neinhuis, C., and Walzel, P. (2005), “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces,” Langmuir 21, 956–961.CrossRefGoogle Scholar
  23. Han, J. T., Jang, Y., Lee, D. Y., Park, J. H., Song, S. H., Ban, D. Y., and Cho, K. (2005), “Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-Induced Morphological Development,” J. Mater. Chem. 15, 3089–3092.CrossRefGoogle Scholar
  24. Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., and Takahara, A, (2005), “Superliquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups,” Langmuir 21, 7299–7302.CrossRefGoogle Scholar
  25. Hosono, E., Fujihara, S., Honma, I., and Zhou, H. (2005), “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process,” J. Am. Chem. Soc. 127, 13458–13459.CrossRefGoogle Scholar
  26. Huang, L., Lau, S. P., Yang, H. Y., Leong, E. S. P., and Yu, S. F. (2005), “Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film,” J. Phys. Chem. 109, 7746–7748.CrossRefGoogle Scholar
  27. Jansen, H., de Boer, M., Legtenberg, R., and Elwenspoek, M. (1995), “The Black Silicon Method: a Universal Method for Determining the Parameter Setting of a Fluorine-Based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control,” J. Micromech. Microeng. 5, 115–120.CrossRefGoogle Scholar
  28. Jung, Y. C. and Bhushan, B. (2006), “Contact Angle, Adhesion, and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity,” Nanotechnology 17, 4970–4980.CrossRefGoogle Scholar
  29. Jung, Y. C. and Bhushan, B. (2009), “Mechanically Durable CNT-Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag,” ACS Nano 3, 4155–4163.CrossRefGoogle Scholar
  30. Kim, D., Hwang, W., Park, H. C., and Lee, K. H. (2007), “Superhydrophobic Micro- and Nanostructures Based on Polymer Sticking,” Key Eng. Mat. 334335, 897–900.CrossRefGoogle Scholar
  31. Koch, K., Bhushan, B., Jung, Y. C., and Barthlott, W. (2009), “Fabrication of Artificial Lotus Leaves and Significance of Hierarchical Structure for Superhydrophobicity and Low Adhesion,” Soft Matter 5, 1386–1393.CrossRefGoogle Scholar
  32. Krupenkin, T. N., Taylor, J. A., Wang, E. N., Kolodner, P., Hodes, M., and Salamon, T. R. (2007), “Reversible Wetting-Dewetting Transitions on Dielectrically Tunable Superhydrophobic Nanostructured Surfaces,” Langmuir 23, 9128–9133.CrossRefGoogle Scholar
  33. Kuan, C. Y., Hon, M. H., Chou, J. M., and Leu, I. C. (2009), “Wetting Characteristics on Micro/Nanostructured Zinc Oxide Coatings,” J. Electrochem. Soc. 156, J32–J36.CrossRefGoogle Scholar
  34. Lau, K. K. S., Bico, J., Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., Milne, W. I., McKinley, G. H., and Gleason, K. K. (2003), “Superhydrophobic Carbon Nanotube Forests,” Nano Lett. 3, 1701–1705.CrossRefGoogle Scholar
  35. Lee, H. and Bhushan, B. (2012), “Fabrication and Characterization of Hierarchical Nanostructured Smart Adhesion Surfaces,” J. Colloid Interface Sci. 372, 231–238.CrossRefGoogle Scholar
  36. Ma, M. and Hill, R. M. (2006), “Superhydrophobic Surfaces,” Curr. Opin. Colloid Interface Sci. 11, 193–202.CrossRefGoogle Scholar
  37. Ma, M., Hill, R. M., Lowery, J. L., Fridrikh, S. V., and Rutledge, G. C. (2005), “Electrospun Poly(styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity,” Langmuir 21, 5549–5554.CrossRefGoogle Scholar
  38. Madou, M. J. (2011), Fundamentals of Microfabrication and Technology: Manufacturing Techniques for Microfabrication and Nanotechnology, Vol. 2, third ed., CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
  39. Martin, S. and Bhushan, B. (2017), “Transparent, Wear-Resistant, Superhydrophobic and Superoleophobic Poly(dimethylsiloxane) (PDMS) Surfaces,” J. Colloid Interface Sci. 488, 118–126.CrossRefGoogle Scholar
  40. Martin, C., Rius, G., Borrise, X., and Perez-Murano, F. (2005), “Nanolithography on Thin Layers of PMMA using Atomic Force Microscopy,” Nanotechnology 16, 1016–1022.CrossRefGoogle Scholar
  41. Martines, E., Seunarine, K., Morgan, H., Gadegaard, N., Wilkinson, C. D. W., and Riehle, M. O. (2005), “Superhydrophobicity and Superhydrophilicity of Regular Nanopatterns,” Nano Lett. 5, 2097–2103.CrossRefGoogle Scholar
  42. Ming, W., Wu, D., van Benthem, R., and de With, G. (2005), “Superhydrophobic Films from Raspberry-Like Particles,” Nano Lett. 5, 2298–2301.CrossRefGoogle Scholar
  43. Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. (1999), “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate,” Adv. Mater. 11, 1365–1368.CrossRefGoogle Scholar
  44. Northen, M. T. and Turner, K. L. (2005), “A Batch Fabricated Biomimetic Dry Adhesive,” Nanotechnology 16, 1159–1166.CrossRefGoogle Scholar
  45. Qian, B. and Shen, Z. (2005), “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates,” Langmuir 21, 9007–9009.CrossRefGoogle Scholar
  46. Shang, H. M., Wang, Y., Limmer, S. J., Chou, T. P., Takahashi, K., and Cao, G. Z. (2005) “Optically Transparent Superhydrophobic Silica-Based Films,” Thin Solid Films 472, 37–43.CrossRefGoogle Scholar
  47. Shi, F., Song, Y., Niu, J., Xia, X., Wang, Z., and Zhang, X. (2006), “Facile Method To Fabricate a Large-Scale Superhydrophobic Surface by Galvanic Cell Reaction,” Chem. Mater. 18, 1365–1368.CrossRefGoogle Scholar
  48. Shibuichi, S., Onda, T, Satoh, N., and Tsujii, K. (1996), “Super-Water-Repellent Surfaces Resulting from Fractal Structure,” J. Phys. Chem. 100, 19512–19517.CrossRefGoogle Scholar
  49. Shirtcliffe, N. J., McHale, G., Newton, M. I., Chabrol, G., Perry, C. C. (2004). “Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces,” Adv. Mater. 16, 1929–1932.CrossRefGoogle Scholar
  50. Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C., and Roach, P. (2005), “Porous Materials Show Superhydrophobic to Superhydrophilic Switching,” Chem. Commun. 3135–3137.Google Scholar
  51. Shiu, J., Kuo, C., Chen, P., and Mou, C. (2004), “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chem. Mater. 16, 561–564.CrossRefGoogle Scholar
  52. Wang, Y., Zhu, Q., and Zhang, H. (2006), “Fabrication and Magnetic Properties of Hierarchical Porous Hollow Nickel Microspheres,” J. Mater. Chem. 16, 1212–1214.CrossRefGoogle Scholar
  53. Wang, S., Liu, H., Liu, D., Ma, X., Fang, X., and Jiang, L. (2007), “Enthalpy Driven Three State Switching of a Superhydrophilic/Superhydrophobic Surfaces,” Angew. Chem. Int. Ed. 46, 3915–3917.CrossRefGoogle Scholar
  54. Wu, X., Zheng, L., and Wu, D. (2005), “Fabrication of Superhydrophobic Surfaces from Microstructured ZnO-Based Surfaces via a Wet-Chemical Route,” Langmuir 21, 2665–2667.CrossRefGoogle Scholar
  55. Zhang, J. L., Li, J. A., and Han, Y. C. (2004a), “Superhydrophobic PTFE Surfaces by Extension,” Macromol. Rapid Commun. 25, 1105–1108.CrossRefGoogle Scholar
  56. Zhang, X., Feng, S., Yu, X., Liu, H., Fu, Y., Wang, Z., Jiang, L., and Li, X. (2004b), “Polyelectrolyte Multilayer as Matrix for Electrochemical Deposition of Gold Clusters: Toward Super-Hydrophobic Surface,” J. Am. Chem. Soc. 126, 3064–3065.CrossRefGoogle Scholar
  57. Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A. (2006), “Interfacial Energy and Strength of Multiwalled-Carbon-Nanotube-Based Dry Adhesive,” J. Vac. Sci. Technol. B 24, 331–335.CrossRefGoogle Scholar
  58. Zhu, L., Xiu, Y., Xu, J., Tamirisa, P. A., Hess, D. W., and Wong C. (2005), “Superhydrophobicity on Two-Tier Rough Surfaces Fabricated by Controlled Growth of Aligned Carbon Nanotube Arrays Coated with Fluorocarbon,” Langmuir 21, 11208–11212.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations