Advertisement

Biomimetics pp 911-958 | Cite as

Self-healing Materials and Defense Mechanisms

  • Bharat BhushanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)

Abstract

In living nature, an organism uses healing and defense mechanisms to survive. Healing can occur through repair or regeneration of damaged tissue, noting that to regenerate is to repair 100% of the damage. The ability to heal is intrinsic to all multicellular organisms (Holliman 1995; Firestein et al. 2012; Cremaldi and Bhushan 2018). Living nature may use defense mechanisms for avoidance of predators. As an example, organisms change to blend in with their immediate surrounding.

References

  1. Addicott, F. T. (1982), Abscission, University of California Press, Berkeley, CA.Google Scholar
  2. Adelstein, R. S. and Eisenberg, E. (1980), “Regulation and Kinetics of the Actin-Myosin-ATP Interaction,” Ann. Rev. Biochem. 49, 921–956.CrossRefGoogle Scholar
  3. Aguinaldo, A. M., Turbeville, J. M., Linford, L. S., Rivera, M. C., Garey, J. R., Raff, R. A., and Lake, J. A. (1997), “Evidence for a Clade of Nematodes, Arthropods and Other Moulting Animals,” Nature 387, 489–493.CrossRefGoogle Scholar
  4. Anonymous (2004), MPF. Photograph: A Section of Yew (Taxus baccata) Showing 27 Annual Growth Rings, Pale Sapwood and Dark Heartwood. Wikimedia, https://commons.wikimedia.org/wiki/File:Taxus_wood.jpg.
  5. Auró (2012), Photograph: Acer platanoides (Norwegian Maple) in “CODIT,” Wikimedia.org, Web, accessed on 10/24/2017.Google Scholar
  6. Barrington, E. J. W. (1979), Invertebrate Structure and Function, 2nd ed., Thomas Nelson and Sons, Nashville, TN.Google Scholar
  7. Bauer, G. and Speck, T. (2012), “Restoration of Tensile Strength in Bark Samples of Ficus benjamina Due to Coagulation of Latex during Fast Self-healing of Fissures,” Ann. Bot. 109, 807–811.CrossRefGoogle Scholar
  8. Bauer, G., Nellesen, A., and Speck, T. (2010), “Biological Lattices in Fast Self-repair Mechanisms in Plants and the Development of Bio-inspired Self-healing Polymers,” in Design and Nature V: Comparing Design in Nature with Science and Engineering (eds. C. A. Brebbia and A. Carpi), pp. 453–459, WIT Press, Southampton, UK.Google Scholar
  9. Beanes, S. R., Dang, C., Soo, C., and Ting, K. (2003), “The Phases of Cutaneous Wound Healing,” Expert Rev. Mol. Med. 5, 1–22.Google Scholar
  10. Betts, J. G., Desaix, P., Johnson, E., Johnson, J. E., Korol, O., Kruse, D., Poe, B., Wise, J. A., Womble, M., and Young, K. A. (2017), Anatomy and Physiology, Rice University, Houston, Texas.Google Scholar
  11. Bhushan, B. (2009), “Biomimetics: Lessons from Nature—An Overview,” Phil Trans. R. Soc. A 367, 1445–1446.CrossRefGoogle Scholar
  12. Bhushan, B., Jung, Y. C., and Koch, K. (2009), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-cleaning and Low Adhesion,” Philos. Trans. R. Soc. A 367, 1631–1672.CrossRefGoogle Scholar
  13. Binder, W. H. (Ed.) (2013), Self-healing Polymers: From Principles to Applications, Wiley-VCH, Weinheim, Germany.Google Scholar
  14. Blaiszik, B. J., Kramer, S. L. B., Olugebefola, S. C., Moore, J. S., Sottos, N. R., and White, S. R. (2010), “Self-healing Polymers and Composites,” Annu. Rev. Mater. Res. 40, 179–211.CrossRefGoogle Scholar
  15. Bloch, R. (1952), “Wound Healing in Higher Plants,” Bot. Rev. 10, 655–679.CrossRefGoogle Scholar
  16. Boddy, L. and Rayner, A. D. M. (1983), “Origins of Decay in Living Deciduous Trees: The Role of Moisture Content and a Re-appraisal of the Expanded Concept of Tree Decay,” New Phytol. 94, 623–641.CrossRefGoogle Scholar
  17. Bourne, G. (Ed.) (1960), The Structure and Function of Muscle V1: Structure, Academic Press, NY.Google Scholar
  18. Breidbach, O. and Kutsch, W. (Eds.) (1995), The Nervous System of Invertebrates: An Evolutionary and Comparative Approach, Birkhauser Verlag, Basel, Switzerland.Google Scholar
  19. Brockes, J. P. and Kumar, A. (2008), “Comparative Aspects of Animal Regeneration,” Annu. Rev. Cell Dev. Biol. 24, 525–549.CrossRefGoogle Scholar
  20. Bulla Jr., L. A. and Cheng, T. C. (1977), Invertebrate Immune Responses, Plenum Press, New York.Google Scholar
  21. Caplan, A. I. (1991), “Mesenchymal Stem Cells,” J. Orthop. Res. 9, 641–650.CrossRefGoogle Scholar
  22. Carlson, B. M. (2007), Principles of Regenerative Biology, Academic Press, Cambridge, MA.Google Scholar
  23. Carroll, M. C. (2004), “The Complement System in Regulation of Adaptive Immunity,” Nat. Immunol. 5, 981–986.CrossRefGoogle Scholar
  24. Cerenius, L. and Söderhäll, K. (2011), “Coagulation in Invertebrates,” J. Innate Immun. 3, 3–8.CrossRefGoogle Scholar
  25. Cooper, G. (2000), The Cell: A Molecular Approach, 2nd ed., Sinnauer Associates, Sunderland, MA.Google Scholar
  26. Cosgrove, D. J. (2005), “Growth of the Plant Cell Wall,” Nat. Rev. Mol. Cell Biol. 6, 850–861.CrossRefGoogle Scholar
  27. Cremaldi, J. C. and Bhushan, B. (2018), “Bioinspired Self-healing Materials: Lessons from Nature,” Beilstein J. Nanotechnol. 9, 907–935.CrossRefGoogle Scholar
  28. Crockett, J. C., Rogers, M. J., Coxon, F. P., Hocking, L. J., and Helfrich, M. H. (2011), “Bone Remodelling at a Glance,” J. Cell Sci. 124, 991–998.CrossRefGoogle Scholar
  29. de Rooij, M., Van Tittelboom, K., De Belie, N., and Schlangen, E. (Eds.) (2013), Self-healing Phenomena in Cement-based Materials, Springer, Dordrecht, Netherlands.Google Scholar
  30. Diesendruck, C. E., Sottos, N. R., Moore, J. S., and White, S. R. (2015), “Biomimetic Self-healing,” Angew. Chem. Int. Ed. 54, 10428–10447.CrossRefGoogle Scholar
  31. Dussourd, D. E. and Denno, R. F. (1991), “Deactivation of Plant Defense: Correspondence between Insect Behavior and Secretory Canal Architecture,” Ecology 72, 1383–1396.CrossRefGoogle Scholar
  32. Edvardsen, C. (1999), “Water Permeability and Autogenous Healing of Cracks in Concrete,” Aci Mater. J. 96, 448–454.Google Scholar
  33. Ehrlich, H. L. (1996), “How Microbes Influence Mineral Growth and Dissolution,” Chem. Geol. 132, 5–9.CrossRefGoogle Scholar
  34. Fenner, M. (Ed.) (2000), Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed., CABI, New York.Google Scholar
  35. Firestein, G. S., Kelley, W. N., and Budd, R. C. (2012), Kelley’s Textbook of Rheumatology, Volume 1, 9th ed., Elsevier Saunders, Philadelphia, PA.Google Scholar
  36. Fratzl, P. and Weinkamer, R. (2007), “Nature’s Hierarchical Materials,” Prog. Mater. Sci. 52, 1263–1334.CrossRefGoogle Scholar
  37. Gilbert, S. F. (2000), Developmental Biology, 6th ed., Sinauer Associates, Sunderland, MA.Google Scholar
  38. Gillott, C. (2005), Entomology, 3rd ed., Springer, Dordrecht, Netherlands.Google Scholar
  39. Greene, W. (2006), Netter’s Orthopaedics, Saunders Elsevier, Philadelphia, PA.Google Scholar
  40. Grubb, P. J. (1977), “The Maintenance of Species-richness in Plant Communities: The Importance of the Regeneration Niche,” Biol. Rev. 52, 107–145.CrossRefGoogle Scholar
  41. Hadjidakis, D. J. and Androulakis, I. I. (2006), “Bone Remodeling,” Ann. N. Y. Acad. Sci. 1092, 385–396.CrossRefGoogle Scholar
  42. Hart, L. R., Harries, J. L., Greenland, B. W., Colquhoun, H. M., and Hayes, W. (2013), “Healable Supramolecular Polymers,” Polym. Chem. 4, 4860–4870.CrossRefGoogle Scholar
  43. Hartmann, H. T. and Kester, D. E. (1977), Plant Propagation: Principles and Practices, 3rd ed., Prentice-Hall, Upper Saddle River, NJ.Google Scholar
  44. Heo, Y. and Sodano, H. A. (2014), “Self-healing Polyurethanes with Shape Recovery,” Adv. Funct. Mater. 24, 5261–5268.CrossRefGoogle Scholar
  45. Hickman Jr., C. P., Roberts, L. S., Keen, S. L., Larson, A., I’Anson, H., and Eisenhour, D. J. (2008), Integrated Principles of Zoology, 14th ed., McGraw Hill, New York.Google Scholar
  46. Hoebe, K., Jannsen, E., and Beutler, B. (2004), “The Interface between Innate and Adaptive Immunity,” Nat. Immunol. 5, 971–974.CrossRefGoogle Scholar
  47. Holliman, J. H. (1995), “Principles of Wound Healing and Tissue Repair,” in Pathology: Oklahoma Notes (ed. R. Krug), pp. 34–37, Springer, New York, NY.Google Scholar
  48. Jani, J. M., Leary, M., Subic, A., and Gibson, M. A. (2014), “A Review of Shape Memory Alloy Research, Applications and Opportunities,” Mater. Des. 56, 1078–1113.Google Scholar
  49. Jones, J. D. G. and Dangl, J. L. (2006), “The Plant Immune System,” Nature 444, 323–329.CrossRefGoogle Scholar
  50. Jonkers, H. M. (2007), “Self Healing Concrete: A Biological Approach,” in Self Healing Materials (ed. S. van der Zwaag), Springer, Dordrecht, Netherlands.Google Scholar
  51. Judd, W. S., Campbell, C. S., Kellog, E. A., Stevens, P. F., and Donoghue, M. J. (2008), Plant Systematics: A Phylogenic Approach, 3rd ed., Sinauer Associates, Sunderland, MA.Google Scholar
  52. Jurkowski, A., Guerrero, G., Sharples, F., Fagen, A., Altevogt, B., and Pope, A. (2017), Understanding Stem Cells, National Academic Press, Washington, DC.Google Scholar
  53. Kapinas, K. and Delany, A. M. (2011), “MicroRNA Biogenesis and Regulation of Bone Remodeling,” Arthritis Res. Ther. 13, 1–11.CrossRefGoogle Scholar
  54. Krautz, R., Arefin, B., and Theopold, U. (2014), “Damage Signals in the Insect Immune Response,” Plant Sci. 5, 1–11.Google Scholar
  55. Liem, K. F., Bemis, W. E., Walker Jr., W. F., and Grande, L. (2001) Functional Anatomy of the Vertebrates: An Evolutionary Perspective, 3rd ed., Harcourt, Orlando, FL.Google Scholar
  56. Liu, C., Qin, H., and Mather, P. T. (2007), “Review of Progress in Shape-Memory Polymers,” J. Mater. Chem. 17, 1543–1558.CrossRefGoogle Scholar
  57. Lv, T., Cheng, Z., Zhang, E., Kang, H., Liu, Y., and Jiang, L. (2017), “Self-restoration of Superhydrophobicity on Shape Memory Polymer Arrays with Both Crushed Microstructure and Damaged Surface Chemistry,” Small 13, 1503402.CrossRefGoogle Scholar
  58. Maderson, P. F. A. (1965), “Histological Changes in the Epidermis of Snakes during the Sloughing Cycle,” J. Zool. 46, 98–113.CrossRefGoogle Scholar
  59. Maderson, P. F. A., Rabinowitz, T., Tandler, B., and Alibard, L. (1998), “Ultrastructural Contributions to an Understanding of the Cellular Mechanisms Involved in Lizard Skin Shedding,” J. Morphol. 236, 1–24.CrossRefGoogle Scholar
  60. Metcalfe, C. R. (1967), “Distribution of Latex in the Plant Kingdom,” Econ. Bot. 21, 115–127.CrossRefGoogle Scholar
  61. Moffett, S. B. (1996), Nervous System Regeneration in the Invertebrates, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  62. Neely, D. (1979), “Tree Wounds and Wound Closure,” J. Arboricult. 5, 135–140.Google Scholar
  63. Neville, A. C. (1975), Biology of the Arthropod Cuticle, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  64. Nosonovsky, M. and Bhushan, B. (2009), “Thermodynamics of Surface Degradation, Self-organization, and Self-healing for Biomimetic Surfaces,” Phil. Trans. R. Soc. A 367, 1607–1627.CrossRefGoogle Scholar
  65. OpenStax (2017), Biology for AP Courses, Muscle Contraction and Locomotion, OpenStax CNX, Houston, Texas.Google Scholar
  66. Parkin, J. (1900), “Observations on Latex and its Functions,” Ann. Bot. 14, 193–214.CrossRefGoogle Scholar
  67. Parle, E., Dirks, J.-H., and Taylor, D. (2016), “Bridging the Gap: Wound Healing in Insects Restores Mechanical Strength by Targeted Cuticle Deposition,” J. R. Soc. Interface 13, 20150984.CrossRefGoogle Scholar
  68. Phlippen, M. K., Webster, S. G., Chung, J. S., and Dirkson, H. (2000), “Ecdysis of Decapod Crustaceans is Associated with a Dramatic Release of Crustacean Cardioactive Peptide in the Haemolymph,” J. Exp. Biol. 203, 521–536.Google Scholar
  69. Portzehl, H., Caldwell, P. C., and Ruegg, J. C. (1964), “The Dependence of Contraction and Relaxation of Muscle Fibres from the Crab Maia Squinado on the Internal Concentration of Free Calcium Ions,” Biochim. Biophys. Acta 79, 581–591.CrossRefGoogle Scholar
  70. Ratcliffe, N. A. and Rowley, A. F. (1979), “A Comparative Synopsis of the Structure and Function of the Blood Cells of Insects and other Invertebrates,” Dev. Comp. Immunol. 3, 189–243.CrossRefGoogle Scholar
  71. Reichert, W. M. (2008), Indwelling Neural Implants: Strategies for Contending with the In Vivo Environment, CRC Press/Taylor & Francis, Boca Raton, FL.Google Scholar
  72. Rimar, P. (2006), Photo Taken of a Tree Knot at the Garden of the Gods Public Park in Colorado Springs, Colorado, Wikimedia Commons, https://en.wikipedia.org/wiki.Wood#/media/file:TreeKnot.jpg, accessed on 9/11/2017.
  73. Rinkevich, B. and Müller, W. E. G. (Eds.) (1996), Invertebrate Immunology, Springer, Berlin, Germany.Google Scholar
  74. Robinton, D. A. and Daley, G. Q. (2013), “The Promise of Induced Pluripotent Stem Cells in Research and Therapy,” Nature 481, 295–305.CrossRefGoogle Scholar
  75. Romberger, J. A., Hejnowicz, Z., and Hill, J. F. (1993), Plant Structure: Function and Development, Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  76. Roskov, Y., Abucay, L., Orrell, T., Nicolson, D., Flann, C., Bailly, N., Kirk, P., Bourgoin, T., DeWalt, R. E., Decock, W., and De Wever, A. (Eds.) (2016), Species 2000 & ITIS Catalogue of Life, 2016 Annual Checklist. Digital resource at www.catalogueoflife.org/annual-checklist/2016.
  77. Ruppert, E. E., Fox, R. S., and Barnes, R. D. (2004), Invertebrate Zoology: A Functional Evolutionary Approach, 7th ed., Brooks/Cole Publishing Co., Pacific Grove, CA.Google Scholar
  78. Schmidt, C. E. and Leach, J. B. (2003), “Neural Tissue Engineering: Strategies for Repair and Regeneration,” Annu. Rev. Biomed. Eng. 5, 293–347.CrossRefGoogle Scholar
  79. Shaw, J. A. and Kyriakides, S. (1995), “Thermomechanical Aspects of NiTi,” J. Mech. Phys. Solids 43, 1243–1281.CrossRefGoogle Scholar
  80. Shigo, A. L. (1984), “Compartmentalization: A Conceptual Framework for Understanding How Trees Grow and Defend Themselves,” Ann. Rev. Phylopalhol. 22, 189–214.CrossRefGoogle Scholar
  81. Singer, A. J. and Clark, R. A. F. (1999), “Cutaneous Wound Healing,” N. Engl. J. Med. 341, 738–746.CrossRefGoogle Scholar
  82. Sonnemann, K. J. and Bement, W. M. (2011), “Wound Repair: Toward Understanding and Integration of Single-Cell and Multicellular Wound Responses,” Annu. Rev. Cell Dev. Biol. 27, 237–263.CrossRefGoogle Scholar
  83. Svent-Gyorgi, A. G. (2004), “The Early History of the Biochemistry of Muscle Contraction,” J. Gen. Physiol. 123, 631–641.Google Scholar
  84. Taylor, D. L. and Panhuis, M. (2016), “Self-healing Hydrogel,” Adv. Mater. 28, 9060–9093.CrossRefGoogle Scholar
  85. Teyssier, J., Saenko, S. V., van der Marel, D., and Milinkovitch, M. C. (2015), “Photonic Crystals Cause Active Colour Change in Chameleons,” Nat. Commun. 6, 1–7.Google Scholar
  86. Van Tittelboom, K. and De Belie, N. (2013), “Self-healing in Cementitious Materials—A Review,” Materials 6, 2182–2217.CrossRefGoogle Scholar
  87. Vijay, K., Murmu, M., and Deo S. V. (2017), “Bacteria Based Self Healing Concrete—A Review,” Constr. Build. Mater. 152, 1008–1014.Google Scholar
  88. Wang, W., Salazar, J., Vahabi, H., Joshi-Imre, A., Voit, W. E., and Kota, A. K. (2017), “Metamorphic Superomniphobic Surfaces,” Adv. Mater. 29, 1700295.CrossRefGoogle Scholar
  89. Weissman, I. L. (2000), “Stem Cells: Units of Development, Review Units of Regeneration, and Units of Evolution,” Cell 100, 157–168.CrossRefGoogle Scholar
  90. White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., and Viswanathan, S. (2001), “Autonomic Healing of Polymer Composites,” Nature 409, 794–797.CrossRefGoogle Scholar
  91. Withers, P. C. (1992), Comparative Animal Physiology, Thompson Learning, Boston, MA.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations