Advertisement

Biomimetics pp 879-910 | Cite as

Structural Coloration

  • Bharat BhushanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)

Abstract

In living nature, flora and fauna produce color through pigments, bioluminescence, or structural coloration. Biological pigments, or simply pigments, are substances produced by living organisms, which produce color resulting from selective light adsorption and reflection of a specific light wavelength. These include plant and flower pigments, such as green pigment chlorophyll used by plants for photosynthesis. Many biological structures contain pigments such as melanin in skin, eyes, fur, and hair. Bioluminescence is the production and emission of visible light by a living organism. It occurs widely in marine organisms, as well as in some fungi, bacteria, and terrestrial invertebrates, such as fireflies. Structural coloration is the production of color by selective light reflection by nanostructured surfaces with features of the same scale as incident visible light wavelengths. While pigments degrade and their colors fade over time, structural coloration can persist for long periods, even after the death of the organism.

References

  1. Aizenberg, J. and Hendler, G. (2004), “Designing Efficient Microlens Arrays: Lessons from Nature, J. Mater. Chem. 14, 2066–2072.CrossRefGoogle Scholar
  2. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. and Hendler, G. (2001), “Calcitic Microlenses as Part of the Photoreceptor System in Brittlestars,” Nature 412, 819–822.CrossRefGoogle Scholar
  3. Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C. and Chen, G. (2004), “Biological Glass Fibers: Correlation between Optical and Structural Properties,” PNAS 101, 3358–3363.CrossRefGoogle Scholar
  4. Amiri, M. H. and Shaheen, H. M. (2012), “Chromatophores and Color Revelation in the Blue Variant of the Siamese Fighting Fish (Betta splendens),” Micron 43, 159–169.CrossRefGoogle Scholar
  5. Bagnara, J. T., Fernandez, P. J. and Fujii, K. (2007), “On the Blue Coloration of Vertebrates,” Pigment Cell Res. 20, 14–26.CrossRefGoogle Scholar
  6. Berthier, S., Charron, E. and Boulenguez, J. (2006), “Morphological Structure and Optical Properties of the Wings of Morphidae,” Insect. Sci. 13, 145–158.CrossRefGoogle Scholar
  7. Berthier, J., Boulenguez, J. and Balint, Z. (2007), “Multiscaled Polarization Effects in Suneve coronata (Lepidoptera) and Other Insects: Application to Anti-Counterfeiting of Banknotes,” Appl. Phys. A 86, 123–130.CrossRefGoogle Scholar
  8. Biró, L. P. and Vigneron, J. P. (2010), “Photonic Nanoarchitectures in Butterflies and Beetles: Valuable Sources for Bioinspiration,” Laser Photonics Rev. 5, 27–51.CrossRefGoogle Scholar
  9. Biró, L. P., Kertész, K., Vértesy, Z., Márk, G. I., Bálint, Z., Lousse, V. and Vigneron, J. P. (2007), “Living Photonic Crystals: Butterfly Scales- Nanostructure and Optical Properties,” Mater. Sci. Eng. C 27, 941–946.CrossRefGoogle Scholar
  10. Booth, C. L. (1990), “Evolutionary Significance of Ontogenetic Colour Change in Animals,” Biol. J. Linn. Soc. 40, 125–163.CrossRefGoogle Scholar
  11. Brink, D. J. and van der Berg, N. G. (2005), “An Investigation of Green Iridescence on the Mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38, 338–343.CrossRefGoogle Scholar
  12. Brink, D. J., van der Berg, N. G. and Botha, A. J. (2002), “Iridescent Colors on Seashells: An Optical and Structural Investigation of Helcion pruinosus,” Appl. Opt. 41, 717–722.CrossRefGoogle Scholar
  13. Chae, J. and Nishida, S. (1994), “Integumental Ultrastructure and Color Patterns in the Iridescent Copepods of the Family Sapphirinidae (Copepoda: Poecilostomatoida),” Mar. Biol. 119, 205–210.Google Scholar
  14. Colomer, J. F., Simonis, P., Bay, A., Cloetens, P., Suhonen, H., Rassart, M., Vandenbem, C. and Vigneron, J. P. (2012), “Photonic Polycrystal in the Greenish-White Scales of the African Longhorn Beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907.Google Scholar
  15. De Silva, L., Hodgkinson, I., Murray, P., Wu, Q., Arnold, M., Leader, J. and McNaughton, A. (2005), “Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings,” Electromagnetic 25, 391–408.Google Scholar
  16. Doucet, S. M. and Meadows, M. G. (2009), “Iridescence: A Functional Perspective,” J. R. Soc. Interface 6, S115–S132.CrossRefGoogle Scholar
  17. Doucet, S. M., Shawkey, M. D., Hill, G. E. and Montgomerie, R. (2006), “Iridescent Plumage in Satin Bowerbirds: Structure, Mechanisms and Nanostructural Predictors of Individual Variation in Colour,” J. Exp. Biol. 209, 380–390.CrossRefGoogle Scholar
  18. Durrer, H. (1962), “Schillerfarben Beim Pfau (Pavo cristatus L.),” Verhand. Naturforsch. Ges. Basel 73, 204–224.Google Scholar
  19. Eliason, C. M. and Shawkey, M. D. (2010), “Rapid, Reversible Response of Iridescent Feather Color to Ambient Humidity,” Opt. Express, 18, 21284–21292.CrossRefGoogle Scholar
  20. Forster, J. D., Noh, H., Liew, S. F., Saranathan, V., Schreck, C. F., Yang, L., Park, J. G., Prum, R. O., Mochrie, S. G., O’Hern, C. S., Cao, H. and Dufresne, E. R. (2010), “Biomimetic Isotropic Nanostructures for Structural Coloration,” Adv. Mater. 22, 2939–2944.CrossRefGoogle Scholar
  21. Fox, D. L. (1976), Animal Biochromes and Structural Colours, second ed., University of California Press, Berkeley, CA.Google Scholar
  22. Fudouzi, H. (2004), “Fabricating High-Quality Opal Films with Uniform Structure over a Large Area,” J. Colloid Interface Sci. 275 277–283.CrossRefGoogle Scholar
  23. Fudouzi, H. (2011), “Tunable Structural Color in Organisms and Photonic Materials for Design of Bioinspired Materials,” Sci. Technol. Adv. Mater. 12, 064704.CrossRefGoogle Scholar
  24. Fung, K. K. (2005), “Photonic Iridescence of a Blue-Banded Bee,” Microscopy and Microanalysis 11, 1202–1203.Google Scholar
  25. Galusha, J. W., Richey, L. R., Gardner, J. S., Cha, J. N. and Bartl, M. H. (2008), “Discovery of a Diamond-Based Photonic Crystal Structure in Beetle Scales,” Phys. Rev. E 77, 050904.Google Scholar
  26. Galusha, J. W., Jorgensen, M. R., and Bartl, M. H. (2010), “Diamondstructured Titania Photonic-bandgap Crystals from Biological Templates,” Adv. Mater. 27, 107–110.CrossRefGoogle Scholar
  27. Ghiradella, H. (1984), “Structure of Iridescent Lepidopteran Scales: Variations on Several Themes,” Ann. Entomol. Soc. Am. 77, 637–645.CrossRefGoogle Scholar
  28. Ghiradella, H. (1991), “Light and Color on the Wing: Structural Colors in Butterflies and Moths,” Appl. Optics 30, 3492–3500.CrossRefGoogle Scholar
  29. Ghiradella, H. (1998), “Hairs, Bristles and Scales,” In: Microscopic Anatomy of Invertebrates (eds. F. W. Harrison and M. Locke), Wiley-Liss Inc., New York.Google Scholar
  30. Ghiradella, H. (2010), “Insect Cuticular Surface Modifications: Scales and Other Structural Formations,” In: Advances in Insect Physiology: Insect Integument and Colour (eds. J. Casas and S. J. Simpson), Elsevier, London, Vol. 38, pp. 135–180.CrossRefGoogle Scholar
  31. Ghiradella, H. and Butler, M. (2009), “Many Variations on a Few Themes: A Broader Look at Development of Iridescent Scales (and Feathers),” J. R. Soc. Interface 6, S243–S251.CrossRefGoogle Scholar
  32. Glover, B. J. and Whitney, H. M. (2010), “Structural Colour and Iridescence in Plants: The Poorly Studied Relations of Pigment Colour,” Ann. Bot. 105, 505–511.CrossRefGoogle Scholar
  33. Gould, K. S. and Lee, D. W. (1996), “Physical and Ultrastructural Basis of Blue Leaf Iridescence in Four Malaysian Understory Plants,” Am. J. Bot. 83, 45–50.CrossRefGoogle Scholar
  34. Graham, R. M., Lee, D. W. and Norstog, K. (1993), “Physical and Ultrastructural Basis of Blue Iridescence in Two Neotropical Ferns,” Am. J. Bot. 80, 198–203.Google Scholar
  35. Hadley, N. F. (1979), “Wax Secretion and Color Phases of the Desert Tenebrionid Beetle Cryptoglossa verrucosa (LeConte),” Science 203, 367–369.CrossRefGoogle Scholar
  36. Hariyama, T., Takaku, Y., Hironaka, M., Horiguchi, H., Komiya, Y. and Kurachi, M. (2002), “The Origin of the Iridescent Colors in Coleopteran elytron,” Forma 17, 123–132.Google Scholar
  37. Hariyama, T., Hironaka, M., Takaku, Y., Horiguchi, H. and Stavenga, D. G., 2005, “The Leaf Beetle, the Jewel Beetle, and the Damselfly; Insects with a Multilayered Show Case,” In: Structural Color in Biological Systems—Principles and Applications, (eds. S. Kinoshita and S. Yoshioka), Osaka University Press, Osaka, Japan.Google Scholar
  38. Hébant, C. and Lee, D. W. (1984), “Ultrastructural Basis and Developmental Control of Blue Iridescence in Selaginella Leaves,” Am. J. Bot. 71, 216–219.CrossRefGoogle Scholar
  39. Hinton, H. E. and Jarman, G. M. (1973), “Physiological Colour Change in the Elytra of the Hercules Beetle, Dynastes Hercules,” J. Ins. Physiol. 19, 533–549.CrossRefGoogle Scholar
  40. Huxley, J. (1976), “Coloration of Papilio zalmoxis and P. Antimachus, and Discovery of Tyndall Blue in Butterflies,” Proc. R. Soc. Lond. B Biol. Sci. 193, 441–453.Google Scholar
  41. Ingram, A. L., Lousse, V., Parker, A. R. and Vigneron, J. P. (2008), “Dual Gratings Interspersed on a Single Butterfly Scale,” J. R. Soc. Interface 5, 1387–1390.CrossRefGoogle Scholar
  42. Jewell, S. A., Vukusic, P. and Roberts, N. W. (2007), “Circularly Polarized Colour Reflection from Helicoidal Structures in the Beetle Plusiotis boucardi,” New J. Phys. 9, 99.CrossRefGoogle Scholar
  43. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. and Meade, R. D. (2008), Photonic Crystals: Molding the Flow of Light, second ed., Princeton University Press, Princeton, NJ.Google Scholar
  44. Kasukawa, H. and Oshima N. (1987), “Divisionistic Generation of Skin Hue and the Change of Shade in the Scalycheek Damselfish, Pomacentrus lepidogenys,” Pigment Cell Res. 1, 152–157.CrossRefGoogle Scholar
  45. Kasukawa, H, Oshima, N. and Fujii, R. (1986), “Control of Chromatophore Movements in Dermal Chromatic Units of Blue Damselfish–II. The Motile Iridophore,” Comp. Biochem. Physiol. C. 83, 1–7.Google Scholar
  46. Kattawar, G. (1994), “A Search for Circular Polarization in Nature,” Opt. Photon. News 5, 42–43.CrossRefGoogle Scholar
  47. Kim, J. H., Moon, J. H., Lee, S. Y. and Park, J. (2010), “Biologically Inspired Humidity Sensor Based on Three-Dimensional Photonic Crystals,” Appl. Phys. Lett. 97, 103701.CrossRefGoogle Scholar
  48. Kinoshita, S. (2008), Structural Colors in the Realm of Nature, World Scientific Publishing Co., Singapore.Google Scholar
  49. Kinoshita, S. and Yoshioka, S. (2005), “Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure,” Chem. Phys. Chem. 6, 1442–1459.CrossRefGoogle Scholar
  50. Kinoshita, S., Yoshioka, S. and Kawagoe, K. (2002), “Mechanisms of Structural Colour in the Morpho Butterfly: Cooperation of Regularity and Irregularity in an Iridescent Scale,” Proc. R. Soc. Lond. B 269, 1417–1421.CrossRefGoogle Scholar
  51. Kinoshita, S., Yoshioka, S. and Miyazaki, J. (2008), “Physics of Structural Colors,” Rep. Prog. Phys. 71, 076401.CrossRefGoogle Scholar
  52. Kolle, M. (2011), Photonic Structures Inspired by Nature, Springer-Verlag, Heidlberg, Germany.CrossRefGoogle Scholar
  53. Kurachi, M., Takaku, Y., Komiya, Y. and Hariyama, T. (2002), “The Origin of Extensive Colour Polymorphism in Plateumaris sericea (Chrysomelidae, Coleoptera),” Naturwissenschaften 89, 295–298.CrossRefGoogle Scholar
  54. Lafait, J., Andraud, C., Berthier, S., Boulenguez, J., Callet, P., Dumazet, S., Rassart, M. and Vigneron, J. P. (2010), “Modeling the Vivid White Color of the Beetle Calothyrza margaritifera,” Mater. Sci. Eng. B 169, 16–22.CrossRefGoogle Scholar
  55. Land, M. F. (1972), “The Physics and Biology of Animal Reflectors,” Prog. Biophys. Mol. Biol. 24, 77–106.CrossRefGoogle Scholar
  56. Lee, D. W. (1997), “Iridescent Blue Plants,” Am. Sci. 85, 56–63.Google Scholar
  57. Lee, E., Lee, H., Kimura, J. and Sugita, S. (2010), “Feather Microstructure of the Black-Billed Magpie (Pica pica sericea) and Jungle Crow (Corvus macrorhynchos),” J. Vet. Med. Sci. 72, 1047.CrossRefGoogle Scholar
  58. Lee, E., Miyazaki, J., Yoshioka, S., Lee, H. and Sugita, S. (2012), “The Weak Iridescent Feather Color in the Jungle Crow Corvus macrorhynchos,” Ornithol. Sci. 11, 59–64.CrossRefGoogle Scholar
  59. Lippert, W., Gentil, K., and Morphol, Z. (1959), “Über Lamellare Feinstrukturen Bei Den Schillerschuppen Der Schmetterlinge Vom Urania- And Morpho-typ,” Oekol. Tiere 48, 115–122.Google Scholar
  60. Liu, F., Yin, H. W., Dong, B. Q., Qing, Y. H., Zhao, L., Meyer, S., Liu, X. H., Zi, J. and Chen, B. (2008), “Inconspicuous Structural Coloration in the Elytra of Beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901.Google Scholar
  61. Liu, F., Bong, B. Q., Liu, X. H., Zheng, Y. M. and Zi, J. (2009), “Structural Color Change in Longhorn Beetles Tmesisternus isabellae,” Opt. Express 17, 16183–16191.CrossRefGoogle Scholar
  62. Liu, F., Wang, G. B., Jiang, L. P. and Dong, B. Q. (2010), “Structural Colouration and Optical Effects in the Wings of Papilio peranthus,” J. Opt. 12, 065301.CrossRefGoogle Scholar
  63. Luke, S. M., Hallam, B. T. and Vukusic, P. (2010), “Structural Optimization for Broadband Scattering in Several Ultra-Thin White Beetle Scales,” Appl. Opt. 49, 4246–4254.CrossRefGoogle Scholar
  64. Lythgoe, J. N. and Shand, J. (1989), “The Structural Basis for Iridescent Colour Changes in Dermal and Corneal Iridophores In Fish,” J. Exp. Biol. 141, 313–325.Google Scholar
  65. Maia, R., Caetano, J. V. O., Bao, S. N. and Macedo, R. H. (2009), “Iridescent Structural Colour Production in Male Blue-Black Grassquit Feather Barbules: The Role of Keratin and Melanin,” J. R. Soc. Interface 6, S203–S211.CrossRefGoogle Scholar
  66. Mason, C. W. (1926), “Structural Colors in Insects. I,” J. Phys. Chem. 30, 383–395.CrossRefGoogle Scholar
  67. Mason, C. W. (1927), “Structural Colors in Insects-II,” J. Phys. Chem. 31, 321–354.CrossRefGoogle Scholar
  68. Mäthger, L. M., Land, M. F., Siebeck, U. E. and Marshall, N. J. (2003), “Rapid Colour Changes in Multilayer Reflecting Stripes in the Paradise Whiptail, Pentapodus paradiseus,” J. Exp. Biol. 206, 3607–3613.CrossRefGoogle Scholar
  69. Mäthger, L. M., Denton, E. J., Marshall, N. J. and Hanlon, R. T. (2009), “Mechanisms and Behavioural Functions of Structural Coloration in Cephalopods,” J. R. Soc. Interface 6, S149–S163.CrossRefGoogle Scholar
  70. McClain, E., Seely, M. K., Hadley, N. F. and Fray, V. (1985), “Wax Blooms in Tenebrionid Beetles of the Namib Desert: Correlations with Environment,” Ecology 66, 112–118.CrossRefGoogle Scholar
  71. McKenzie, D. R. and Large, M. (1998), “Multilayer Reflectors in Animals using Green and Gold Beetles as Contrasting Examples,” J. Exp. Biol. 201, 1307–1313.Google Scholar
  72. McKenzie, D. R., Yin, Y. and McFall, W. D. (1995), “Silvery Fish Skin as an Example of a Chaotic Reflector,” Pro. Mathem. Phys. Sci. 451, 579–584.CrossRefGoogle Scholar
  73. Mouchet, S., Deparis, O. and Vigneron, J. P. (2012), “Unexplained High Sensitivity of the Reflectance of Porous Natural Photonic Structures to the Presence of Gases and Vapors in the Atmosphere,” In: Nanophotonics IV, Proc. SPIE 8424, 842425.Google Scholar
  74. Nagaishi, H. and Oshima, N. (1992), “Ultrastructure of the Motile Iridophores of the Neon Tetra,” Zool. Sci. 9, 65–75.Google Scholar
  75. Nagaishi, H., Oshima, N. and Fujii, R. (1990), “Light-Reflecting Properties of the Iridophores of the Neon Tetra, Paracheirodon innesi,” Comp. Biochem. Physiol. 95A, 337–341.Google Scholar
  76. Neville, A. C. and Caveney, S. (1969), “Scarabaeid Beetle Exocuticle as an Optical Analogue of Cholesteric Liquid Crystals,” Biol. Rev. 44, 531–562.CrossRefGoogle Scholar
  77. Oshima, N. and Fujii, R. (1987), “Mobile Mechanisms of Blue Damselfish (Chrysiptera cyanea) Iridophores,” Cell Motil. Cytoskel. 8, 85–90.CrossRefGoogle Scholar
  78. Otaki, J. M. (2008), “Physiologically Induced Color-Pattern Changes in Butterfly Wings: Mechanistic and Evolutionary Implications,” J. Insect Phys. 54, 1099–1112.CrossRefGoogle Scholar
  79. Palmer, C. and Loewen, E. (2005), Diffraction Grating Handbook, sixth ed., Newport Corporation, New York.Google Scholar
  80. Parker, A. R. (1995), “Discovery of Functional Iridescence and its Coevolution with Eyes in the Phylogeny of Ostracoda (Crustacea), Proc. R. Soc. London, Ser. B, 262, 349–355.CrossRefGoogle Scholar
  81. Parker, A. R. (2000), “515 Million Years of Structural Colour,” J. Opt. A: Pure Appl. Opt. 2, R15–R28.CrossRefGoogle Scholar
  82. Parker, A. R. (2004), “A Vision for Natural Photonics,” Phil. Trans. R. Soc. Lond. A 362, 2709–2720.CrossRefGoogle Scholar
  83. Parker, A. R. (2009), “Natural Photonics for Industrial Inspiration,” Philos. Transact. A Math. Phys. Eng. Sci. 367, 1759–1782.CrossRefGoogle Scholar
  84. Parker, A. R. and Townley, H. E. (2007), “Biomimetics of Photonic Nanostructures,” Nat. Nanotechnol. 2, 347–353.CrossRefGoogle Scholar
  85. Parker, A. R., McKenzie, D. R. and Ahyong, S. T. (1998), “A Unique Form of Light Reflector and the Evolution of Signalling in Ovalipes (Crustacea: Decapoda: Portunidae),” Proc. R. Soc. Lond. B Biol. 265, 861–867.CrossRefGoogle Scholar
  86. Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C. and Nicorovici, N. A. (2001), “Photonic Engineering: Aphrodite’s Iridescence,” Nature 409, 36–37.CrossRefGoogle Scholar
  87. Parker, A. R., Welch, V. L., Driver, D. and Martini, N. (2003), “Structural Colour: Opal Analogue Discovered in a Weevil,” Nature 426, 786–787.CrossRefGoogle Scholar
  88. Poladian, L., Wickham, S., Lee, K. and Large, M. C. J. (2009), “Iridescence from Photonic Crystals and Its Suppression in Butterfly Scales,” J. R. Soc. Interface 6, S233–S242.CrossRefGoogle Scholar
  89. Pouya, C., Stavenga, D. G. and Vukusic, P. (2011), “Discovery of Ordered and Quasi-Ordered Photonic Crystal Structures in the Scales of the Beetle Eupholus magnificus,” Opt. Express 19, 11355–11364.CrossRefGoogle Scholar
  90. Prum, R. O. (2006), “Anatomy, Physics, and Evolution of Structural Colors,” In: Bird Coloration: Mechanisms and Measurements (eds. G. E. Hill and K. J. McGraw) Harvard University Press, Boston.Google Scholar
  91. Prum, R. O. and Torres, R. H. (2003), “A Fourier Tool for the Analysis of Coherent Light Scattering by Bio-Optical Nanostructures,” Integr. Comp. Biol. 43, 591–602.CrossRefGoogle Scholar
  92. Prum, R. O., Torres, R., Kovach, C., Williamson, S., and Goodman, S. M. (1999), “Coherent Light Scattering by Nanostructured Collagen Arrays in the Caruncles of the Malagasy Asities (Eurylaimidae: aves),” J. Exp. Biol. 202, 3507–3522.Google Scholar
  93. Prum, R. O., Cole, J. A., and Torres, R. H. (2004), “Blue Integumentary Structural Colors in Dragonflies (Odonata) are not Produced by Incoherent Tyndall Scattering,” J. Exp. Biol. 207, 3999–4009.CrossRefGoogle Scholar
  94. Rassart, M., Colomer, J. F., Tabarrant, T., and Vigneron, J. P. (2008), “Diffractive Hygrochromic Effect in the Cuticle of the Hercules Beetle Dynastes hercules,” New J. Phys. 10, 033014.CrossRefGoogle Scholar
  95. Rassart, M., Simonis, P., Bay, A., Deparis, O. and Vigneron, J. P. (2009), “Scale Coloration Change following Water Absorption in the Beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E 80, 031910.Google Scholar
  96. Saito, A., Miyamura, Y., Ishikawa, Y., Murase, J., Akai-Kasaya, M. and Kuwahara, Y. (2009), “Reproduction, Mass-Production, and Control of the Morpho-Butterfly’s Blue,” In: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II (eds. T. J. Suleski, W. V. Schoenfeld and J. J. Wang), Proceedings of SPIE 7205, 720506.Google Scholar
  97. Saranathan, V., Osuji, C. O., Mochrie, S. G. J., Noh, H., Narayanan, S., Sandy, A., Dufresne, E. R. and Prum, R. O. (2010), “Structure, Function, and Self-Assembly of Single Network Gyroid (I4132) Photonic Crystals in Butterfly Wing Scales,” PNAS 107, 11676–11681.CrossRefGoogle Scholar
  98. Schultz, T. D. and Rankin, M. A. (1985), “The Ultrastructure of Epicuticular Interference Reflectors of Tiger Beetles (Cicindela),” J. Exp. Biol. 117, 88–110.Google Scholar
  99. Seago, A. E., Brady, P., Vigneron, J. P. and Schultz, T. D. (2009), “Gold Bugs and Beyond: A Review of Iridescence and Structural Colour Mechanisms in Beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184.CrossRefGoogle Scholar
  100. Sharma, V., Crne, M., Park, J. O. and Srinivasarao, M. (2009), “Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles,” Science 325, 449–451.CrossRefGoogle Scholar
  101. Shawkey, M. D., Morehouse, N. I. and Vukusic, P. (2009), “A Protean Palette: Colour Materials and Mixing in Birds and Butterflies,” J. R. Soc. Interface 6, S221–S231.CrossRefGoogle Scholar
  102. Shawkey, M. D., D’Alba, L., Wozny, J., Eliason, C., Koop, J. A. and Jia, L. (2011), “Structural Color Change following Hydration and Dehydration of Iridescent Mourning Dove (Zenaida macroura) Feathers,” Zool. 114, 59–68.CrossRefGoogle Scholar
  103. Shevtsova, E., Hansson, C., Janzen, D. H. and Kjærandsen, J. (2011), “Stable Structural Color Patterns Displayed on Transparent Insect Wings,” PNAS 108, 668–673.CrossRefGoogle Scholar
  104. Simonis, P. and Vigneron, J. P. (2011), “Structural Color Produced by a Three-Dimensional Photonic Polycrystal in the Scales of a Longhorn Beetle: Pseudomyagrus waterhousei (Coleoptera: Cerambicidae),” Phys. Rev. 83, 011908.Google Scholar
  105. Srinivasarao, M. (1999), “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99, 1935–1961.CrossRefGoogle Scholar
  106. Stavenga, D. G. (2009), “Surface Colors of Insects: Wings and Eyes,” In: Functional Surfaces in Biology (ed. S. N. Gorb), Springer, Netherlands.CrossRefGoogle Scholar
  107. Stavenga, D. G., Leertouwer, H. L., Marshall, N. J., and Osorio, D. (2010), “Dramatic Colour Changes in a Bird of Paradise Caused by Uniquely Structured Breast Feather Barbules,” P. Roy. Soc. B 278, 2098–2104.CrossRefGoogle Scholar
  108. Sun, J., Bhushan, B., and Tong, J. (2013), “Structural Coloration in Nature,” RSC Advances 3, 14862–14899.CrossRefGoogle Scholar
  109. Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M. and Aizenberg, J. (2003), “Fiber-Optical Features of a Glass Sponge,” Nature 424, 899–900.CrossRefGoogle Scholar
  110. Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M. and Stone, M. O. (2008), “Cephalopod Coloration Model. I. Squid Chromatophores and Iridophores,” JOSA A 25, 588–599.CrossRefGoogle Scholar
  111. Tamáska, I., Kertész, K., Vértesy, Z., Bálint, Z., Kun, A., Yen S. H. and Biró, L. P. (2013), “Color Changes upon Cooling of Lepidoptera Scales Containing Photonic Nanoarchitectures,” Key Engineering Materials 543, 18–21.CrossRefGoogle Scholar
  112. Thyl–én, L., Qiu, M. and Anand, S. (2004), “Photonic Crystals – A Step Towards Integrated Circuits for Photonics,” Chem. Phys. Chem. 5, 1268–1283.Google Scholar
  113. Trzeciak, T. M. and Vukusic, P. (2009), “Photonic Crystal Fiber in the Polychaete Worm Pherusa sp.,” Phys. Rev. E 80, 061908.Google Scholar
  114. Trzeciak, T. M., Wilts, B. D., Stavenga, D. G., and Vukusic, P. (2012), “Variable Multilayer Reflection together with Long-Pass Filtering Pigment Determines the Wing Coloration of Papilionid Butterflies of the Nireus Group,” Opt. Express 20, 8877–8890.CrossRefGoogle Scholar
  115. Vigneron, J. P. and Simonis P. (2010), “Structural Colours,” Adv. Insect Physiol. 38, 181–218.Google Scholar
  116. Vigneron, J. P. and Simonis, P. (2012), “Natural Photonic Crystals,” J. Phys. B Condensed Matter. 20, 4032–4036.CrossRefGoogle Scholar
  117. Vigneron, J. P., Colomer, J. F., Vigneron, N. and Lousse, V. (2005), “Natural Layer-by-layer Photonic Structure in the Squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904.Google Scholar
  118. Vigneron, J. P., Colomer, J. F., Rassart, M., Ingram, A. L, and Lousse, V. (2006), “Structural Origin of the Colored Reflections from the Black-Billed Magpie Feathers,” Phys. Rev. E 73, 021914.Google Scholar
  119. Vigneron, J. P., Pasteels, J. M., Windsor, D. M., Vértesy, Z., Rassart, M., Seldrum, T., Dumont, J., Deparis, O., Lousse, V., Biró, L. P., Ertz, D. and Welch, V. (2007), “Switchable Reflector in the Panamanian Tortoise Beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E 76, 031907.Google Scholar
  120. Vigneron, J. P., Rassart, M., Simonis, P., Colomer, J. F., and Bay, A. (2009), “Possible Uses of the Layered Structure Found in the Scales of Hoplia coerulea (Coleoptera),” In: Biomimetics and Bioinspiration (eds. R. J. Martín-Palma and A. Lakhtakia), Proc. of SPIE 7401, 74010B.Google Scholar
  121. Vignolini, S., Rudall, P. J., Rowland, A. V., Reed, A., Moyroud, E., Faden, R. B., Baumberg, J. J., Glover, B. J. and Steiner, U. (2012), “Pointillist Structural Color in Pollia Fruit,” Proc. Natl. Acad. Sci. USA 109, 15712–15715.CrossRefGoogle Scholar
  122. Vukusic, P. (2010), “An Introduction to Bio-Inspired Design,” Contact Lens Spectrum http://www.clspectrum.com/printarticle.aspx?articleID=104164.
  123. Vukusic, P. and Sambles, J. R. (2003), “Photonic Structures in Biology,” Nature 424, 852–855.CrossRefGoogle Scholar
  124. Vukusic, P., Sambles, J. R., Lawrence, C. R. and Wootton R. J. (1999), “Quantified Interference and Diffraction in Single Morpho Butterfly Scales,” Proc. R. Soc. Lond. B 266, 1403–1411.CrossRefGoogle Scholar
  125. Vukusic, P., Sambles, J. R. and Lawrence, C. R. (2000), “Colour Mixing in Wing Scales of a Butterfly,” Nature 404, 457.CrossRefGoogle Scholar
  126. Vukusic, P., Wootton, R. J. and Sambles, J. R. (2004), “Remarkable Iridescence in the Hindwings of the Damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. R. Soc. Lond. B 271, 595–601.CrossRefGoogle Scholar
  127. Vukusic, P., Hallam, B. and Noyes, J. (2007), “Brilliant Whiteness in Ultrathin Beetle Scales,” Science 315, 348.CrossRefGoogle Scholar
  128. Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. and Matsui, S. (2005), “Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure,” Jap. J. Appl. Phys. 44, L48–L50.CrossRefGoogle Scholar
  129. Welch, V. and Vigneron, J. (2007), “Beyond Butterflies—The Diversity of Biological Photonic Crystals,” Opt. Quantum Electron. 39, 295–303.CrossRefGoogle Scholar
  130. Welch, V., Vigneron, J. and Parker, A. (2005), “The Cause of Colouration in the Ctenophore Beroë cucumis,” Curr.Biol. 15, R985–R986.CrossRefGoogle Scholar
  131. Welch, V., Vigneron, J. P., Parker, A. and Lousse, V. (2006), “Optical Properties of the Iridescent Organ of the Comb-Jellyfish Beroë cucumis (Ctenophora),” Phys. Rev. E 73, 041916.Google Scholar
  132. Welch, V., Lousse, V., Deparis, O., Parker, A. and Vigneron, J. P. (2007), “Orange Reflection from a Three-Dimensional Photonic Crystal in the Scales of the Weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E 75, 041919.Google Scholar
  133. Whitney, H. M., Kolle, M., Andrew, P., Chittka, L., Steiner, U. and Glover, B. J. (2009), “Floral Iridescence, Produced by Diffractive Optics, Acts as a Cue for Animal Pollinators,” Science 323, 130–133.CrossRefGoogle Scholar
  134. Wilts, B. D., Leertouwer, H. L., and Stavenga, D. G. (2009), “Imaging Scatterometry and Microspectrophotometry of Lycaenid Butterfly Wing Scales with Perforated Multilayers,” J. R. Soc. Interface 6, S193–S202.CrossRefGoogle Scholar
  135. Wilts, B. D., Pirih, P., and Stavenga, D. G. (2011), “Spectral Reflectance Properties of Iridescent Pierid Butterfly Wings,” J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197, 693–702.CrossRefGoogle Scholar
  136. Wilts, B. D., Michielsen, K., De Raedt, H., and Stavenga, D. G. (2012), “Hemispherical Brillouin Zone Imaging of a Diamond-Type Biological Photonic Crystal,” J. R. Soc. Interface 9, 1609–1614.CrossRefGoogle Scholar
  137. Yoshioka, S. and Kinoshita, S. (2002), “Effect of Macroscopic Structure in Iridescent Color of the Peacock Feathers,” Forma 17, 169–181.Google Scholar
  138. Yoshioka, S. and Kinoshita, S. (2004), “Wavelength-Selective and Anisotropic Light-Diffusing Scale on the Wing of the Morpho Butterfly,” Proc. Biol. Sci. 271, 581–587.CrossRefGoogle Scholar
  139. Yoshioka, S. and Kinoshita, S. (2007), “Polarization-Sensitive Color Mixing in the Wing of the Madagascan Sunset Moth,” Opt. Express 15, 2691–2701.CrossRefGoogle Scholar
  140. Yoshioka, S, Nakamura, E. and Kinoshita, S. (2007), “Origin of Two-Color Iridescence in Rock Dove’s Feather,” J. Phys. Soc. Japan 76, 013801.CrossRefGoogle Scholar
  141. Yoshioka, S. Matsuhana, B. Tanaka, S. Inouye, Y. Oshima, N. and Kinoshita, S. (2011), “Mechanism of Variable Structural Colour in the Neon Tetra: Quantitative Evaluation of the Venetian Blind Model,” J. R. Soc. Interface 8, 56–66.CrossRefGoogle Scholar
  142. Yu, K. L., Fan T. X., Lou, S. and Zhang, D. (2013), “Biomimetic Optical Materials: Integration of Nature’s Design for Manipulation of Light,” Prog. Mater. Sci. 58, 825–873CrossRefGoogle Scholar
  143. Zhang, W., Zhang, D., Fan, T., Gu, J., Ding, J., Wang, H., Guo, Q. X. and Ogawa, H. (2009), “Novel Photoanode Structure Templated from Butterfly Wing Scales,” Chem. Mater. 21, 33–40.CrossRefGoogle Scholar
  144. Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Lui, X. and Fu, R. (2003), “Coloration Strategies in Peacock Feathers,” Proc. Natl. Acad. Sci. USA 100, 12576–12578.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations