Skip to main content

Structural Coloration

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

Abstract

In living nature , flora and fauna produce color through pigments , bioluminescence , or structural coloration . Biological pigments , or simply pigments , are substances produced by living organisms, which produce color resulting from selective light adsorption and reflection of a specific light wavelength. These include plant and flower pigments , such as green pigment chlorophyll used by plants for photosynthesis. Many biological structures contain pigments such as melanin in skin , eyes, fur, and hair. Bioluminescence is the production and emission of visible light by a living organism. It occurs widely in marine organisms, as well as in some fungi, bacteria, and terrestrial invertebrates , such as fireflies. Structural coloration is the production of color by selective light reflection by nanostructured surfaces with features of the same scale as incident visible light wavelengths. While pigments degrade and their colors fade over time, structural coloration can persist for long periods, even after the death of the organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenberg, J. and Hendler, G. (2004), “Designing Efficient Microlens Arrays: Lessons from Nature, J. Mater. Chem. 14, 2066–2072.

    Article  CAS  Google Scholar 

  • Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. and Hendler, G. (2001), “Calcitic Microlenses as Part of the Photoreceptor System in Brittlestars,” Nature 412, 819–822.

    Article  CAS  Google Scholar 

  • Aizenberg, J., Sundar, V. C., Yablon, A. D., Weaver, J. C. and Chen, G. (2004), “Biological Glass Fibers: Correlation between Optical and Structural Properties,” PNAS 101, 3358–3363.

    Article  CAS  Google Scholar 

  • Amiri, M. H. and Shaheen, H. M. (2012), “Chromatophores and Color Revelation in the Blue Variant of the Siamese Fighting Fish (Betta splendens),” Micron 43, 159–169.

    Article  CAS  Google Scholar 

  • Bagnara, J. T., Fernandez, P. J. and Fujii, K. (2007), “On the Blue Coloration of Vertebrates,” Pigment Cell Res. 20, 14–26.

    Article  CAS  Google Scholar 

  • Berthier, S., Charron, E. and Boulenguez, J. (2006), “Morphological Structure and Optical Properties of the Wings of Morphidae,” Insect. Sci. 13, 145–158.

    Article  Google Scholar 

  • Berthier, J., Boulenguez, J. and Balint, Z. (2007), “Multiscaled Polarization Effects in Suneve coronata (Lepidoptera) and Other Insects: Application to Anti-Counterfeiting of Banknotes,” Appl. Phys. A 86, 123–130.

    Article  CAS  Google Scholar 

  • Biró, L. P. and Vigneron, J. P. (2010), “Photonic Nanoarchitectures in Butterflies and Beetles: Valuable Sources for Bioinspiration,” Laser Photonics Rev. 5, 27–51.

    Article  Google Scholar 

  • Biró, L. P., Kertész, K., Vértesy, Z., Márk, G. I., Bálint, Z., Lousse, V. and Vigneron, J. P. (2007), “Living Photonic Crystals: Butterfly Scales- Nanostructure and Optical Properties,” Mater. Sci. Eng. C 27, 941–946.

    Article  CAS  Google Scholar 

  • Booth, C. L. (1990), “Evolutionary Significance of Ontogenetic Colour Change in Animals,” Biol. J. Linn. Soc. 40, 125–163.

    Article  Google Scholar 

  • Brink, D. J. and van der Berg, N. G. (2005), “An Investigation of Green Iridescence on the Mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38, 338–343.

    Article  CAS  Google Scholar 

  • Brink, D. J., van der Berg, N. G. and Botha, A. J. (2002), “Iridescent Colors on Seashells: An Optical and Structural Investigation of Helcion pruinosus,” Appl. Opt. 41, 717–722.

    Article  Google Scholar 

  • Chae, J. and Nishida, S. (1994), “Integumental Ultrastructure and Color Patterns in the Iridescent Copepods of the Family Sapphirinidae (Copepoda: Poecilostomatoida),” Mar. Biol. 119, 205–210.

    Google Scholar 

  • Colomer, J. F., Simonis, P., Bay, A., Cloetens, P., Suhonen, H., Rassart, M., Vandenbem, C. and Vigneron, J. P. (2012), “Photonic Polycrystal in the Greenish-White Scales of the African Longhorn Beetle Prosopocera lactator (Cerambycidae),” Phys. Rev. E 85, 011907.

    Google Scholar 

  • De Silva, L., Hodgkinson, I., Murray, P., Wu, Q., Arnold, M., Leader, J. and McNaughton, A. (2005), “Natural and Nanoengineered Chiral Reflectors: Structural Color of Manuka Beetles and Titania Coatings,” Electromagnetic 25, 391–408.

    Google Scholar 

  • Doucet, S. M. and Meadows, M. G. (2009), “Iridescence: A Functional Perspective,” J. R. Soc. Interface 6, S115–S132.

    Article  Google Scholar 

  • Doucet, S. M., Shawkey, M. D., Hill, G. E. and Montgomerie, R. (2006), “Iridescent Plumage in Satin Bowerbirds: Structure, Mechanisms and Nanostructural Predictors of Individual Variation in Colour,” J. Exp. Biol. 209, 380–390.

    Article  Google Scholar 

  • Durrer, H. (1962), “Schillerfarben Beim Pfau (Pavo cristatus L.),” Verhand. Naturforsch. Ges. Basel 73, 204–224.

    Google Scholar 

  • Eliason, C. M. and Shawkey, M. D. (2010), “Rapid, Reversible Response of Iridescent Feather Color to Ambient Humidity,” Opt. Express, 18, 21284–21292.

    Article  CAS  Google Scholar 

  • Forster, J. D., Noh, H., Liew, S. F., Saranathan, V., Schreck, C. F., Yang, L., Park, J. G., Prum, R. O., Mochrie, S. G., O’Hern, C. S., Cao, H. and Dufresne, E. R. (2010), “Biomimetic Isotropic Nanostructures for Structural Coloration,” Adv. Mater. 22, 2939–2944.

    Article  CAS  Google Scholar 

  • Fox, D. L. (1976), Animal Biochromes and Structural Colours, second ed., University of California Press, Berkeley, CA.

    Google Scholar 

  • Fudouzi, H. (2004), “Fabricating High-Quality Opal Films with Uniform Structure over a Large Area,” J. Colloid Interface Sci. 275 277–283.

    Article  CAS  Google Scholar 

  • Fudouzi, H. (2011), “Tunable Structural Color in Organisms and Photonic Materials for Design of Bioinspired Materials,” Sci. Technol. Adv. Mater. 12, 064704.

    Article  CAS  Google Scholar 

  • Fung, K. K. (2005), “Photonic Iridescence of a Blue-Banded Bee,” Microscopy and Microanalysis 11, 1202–1203.

    Google Scholar 

  • Galusha, J. W., Richey, L. R., Gardner, J. S., Cha, J. N. and Bartl, M. H. (2008), “Discovery of a Diamond-Based Photonic Crystal Structure in Beetle Scales,” Phys. Rev. E 77, 050904.

    Google Scholar 

  • Galusha, J. W., Jorgensen, M. R., and Bartl, M. H. (2010), “Diamondstructured Titania Photonic-bandgap Crystals from Biological Templates,” Adv. Mater. 27, 107–110.

    Article  CAS  Google Scholar 

  • Ghiradella, H. (1984), “Structure of Iridescent Lepidopteran Scales: Variations on Several Themes,” Ann. Entomol. Soc. Am. 77, 637–645.

    Article  Google Scholar 

  • Ghiradella, H. (1991), “Light and Color on the Wing: Structural Colors in Butterflies and Moths,” Appl. Optics 30, 3492–3500.

    Article  CAS  Google Scholar 

  • Ghiradella, H. (1998), “Hairs, Bristles and Scales,” In: Microscopic Anatomy of Invertebrates (eds. F. W. Harrison and M. Locke), Wiley-Liss Inc., New York.

    Google Scholar 

  • Ghiradella, H. (2010), “Insect Cuticular Surface Modifications: Scales and Other Structural Formations,” In: Advances in Insect Physiology: Insect Integument and Colour (eds. J. Casas and S. J. Simpson), Elsevier, London, Vol. 38, pp. 135–180.

    Chapter  Google Scholar 

  • Ghiradella, H. and Butler, M. (2009), “Many Variations on a Few Themes: A Broader Look at Development of Iridescent Scales (and Feathers),” J. R. Soc. Interface 6, S243–S251.

    Article  Google Scholar 

  • Glover, B. J. and Whitney, H. M. (2010), “Structural Colour and Iridescence in Plants: The Poorly Studied Relations of Pigment Colour,” Ann. Bot. 105, 505–511.

    Article  Google Scholar 

  • Gould, K. S. and Lee, D. W. (1996), “Physical and Ultrastructural Basis of Blue Leaf Iridescence in Four Malaysian Understory Plants,” Am. J. Bot. 83, 45–50.

    Article  Google Scholar 

  • Graham, R. M., Lee, D. W. and Norstog, K. (1993), “Physical and Ultrastructural Basis of Blue Iridescence in Two Neotropical Ferns,” Am. J. Bot. 80, 198–203.

    Google Scholar 

  • Hadley, N. F. (1979), “Wax Secretion and Color Phases of the Desert Tenebrionid Beetle Cryptoglossa verrucosa (LeConte),” Science 203, 367–369.

    Article  CAS  Google Scholar 

  • Hariyama, T., Takaku, Y., Hironaka, M., Horiguchi, H., Komiya, Y. and Kurachi, M. (2002), “The Origin of the Iridescent Colors in Coleopteran elytron,” Forma 17, 123–132.

    Google Scholar 

  • Hariyama, T., Hironaka, M., Takaku, Y., Horiguchi, H. and Stavenga, D. G., 2005, “The Leaf Beetle, the Jewel Beetle, and the Damselfly; Insects with a Multilayered Show Case,” In: Structural Color in Biological Systems—Principles and Applications, (eds. S. Kinoshita and S. Yoshioka), Osaka University Press, Osaka, Japan.

    Google Scholar 

  • Hébant, C. and Lee, D. W. (1984), “Ultrastructural Basis and Developmental Control of Blue Iridescence in Selaginella Leaves,” Am. J. Bot. 71, 216–219.

    Article  Google Scholar 

  • Hinton, H. E. and Jarman, G. M. (1973), “Physiological Colour Change in the Elytra of the Hercules Beetle, Dynastes Hercules,” J. Ins. Physiol. 19, 533–549.

    Article  Google Scholar 

  • Huxley, J. (1976), “Coloration of Papilio zalmoxis and P. Antimachus, and Discovery of Tyndall Blue in Butterflies,” Proc. R. Soc. Lond. B Biol. Sci. 193, 441–453.

    Google Scholar 

  • Ingram, A. L., Lousse, V., Parker, A. R. and Vigneron, J. P. (2008), “Dual Gratings Interspersed on a Single Butterfly Scale,” J. R. Soc. Interface 5, 1387–1390.

    Article  Google Scholar 

  • Jewell, S. A., Vukusic, P. and Roberts, N. W. (2007), “Circularly Polarized Colour Reflection from Helicoidal Structures in the Beetle Plusiotis boucardi,” New J. Phys. 9, 99.

    Article  Google Scholar 

  • Joannopoulos, J. D., Johnson, S. G., Winn, J. N. and Meade, R. D. (2008), Photonic Crystals: Molding the Flow of Light, second ed., Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Kasukawa, H. and Oshima N. (1987), “Divisionistic Generation of Skin Hue and the Change of Shade in the Scalycheek Damselfish, Pomacentrus lepidogenys,” Pigment Cell Res. 1, 152–157.

    Article  CAS  Google Scholar 

  • Kasukawa, H, Oshima, N. and Fujii, R. (1986), “Control of Chromatophore Movements in Dermal Chromatic Units of Blue Damselfish–II. The Motile Iridophore,” Comp. Biochem. Physiol. C. 83, 1–7.

    Google Scholar 

  • Kattawar, G. (1994), “A Search for Circular Polarization in Nature,” Opt. Photon. News 5, 42–43.

    Article  Google Scholar 

  • Kim, J. H., Moon, J. H., Lee, S. Y. and Park, J. (2010), “Biologically Inspired Humidity Sensor Based on Three-Dimensional Photonic Crystals,” Appl. Phys. Lett. 97, 103701.

    Article  CAS  Google Scholar 

  • Kinoshita, S. (2008), Structural Colors in the Realm of Nature, World Scientific Publishing Co., Singapore.

    Google Scholar 

  • Kinoshita, S. and Yoshioka, S. (2005), “Structural Colors in Nature: The Role of Regularity and Irregularity in the Structure,” Chem. Phys. Chem. 6, 1442–1459.

    Article  CAS  Google Scholar 

  • Kinoshita, S., Yoshioka, S. and Kawagoe, K. (2002), “Mechanisms of Structural Colour in the Morpho Butterfly: Cooperation of Regularity and Irregularity in an Iridescent Scale,” Proc. R. Soc. Lond. B 269, 1417–1421.

    Article  Google Scholar 

  • Kinoshita, S., Yoshioka, S. and Miyazaki, J. (2008), “Physics of Structural Colors,” Rep. Prog. Phys. 71, 076401.

    Article  Google Scholar 

  • Kolle, M. (2011), Photonic Structures Inspired by Nature, Springer-Verlag, Heidlberg, Germany.

    Chapter  Google Scholar 

  • Kurachi, M., Takaku, Y., Komiya, Y. and Hariyama, T. (2002), “The Origin of Extensive Colour Polymorphism in Plateumaris sericea (Chrysomelidae, Coleoptera),” Naturwissenschaften 89, 295–298.

    Article  CAS  Google Scholar 

  • Lafait, J., Andraud, C., Berthier, S., Boulenguez, J., Callet, P., Dumazet, S., Rassart, M. and Vigneron, J. P. (2010), “Modeling the Vivid White Color of the Beetle Calothyrza margaritifera,” Mater. Sci. Eng. B 169, 16–22.

    Article  CAS  Google Scholar 

  • Land, M. F. (1972), “The Physics and Biology of Animal Reflectors,” Prog. Biophys. Mol. Biol. 24, 77–106.

    Article  CAS  Google Scholar 

  • Lee, D. W. (1997), “Iridescent Blue Plants,” Am. Sci. 85, 56–63.

    Google Scholar 

  • Lee, E., Lee, H., Kimura, J. and Sugita, S. (2010), “Feather Microstructure of the Black-Billed Magpie (Pica pica sericea) and Jungle Crow (Corvus macrorhynchos),” J. Vet. Med. Sci. 72, 1047.

    Article  Google Scholar 

  • Lee, E., Miyazaki, J., Yoshioka, S., Lee, H. and Sugita, S. (2012), “The Weak Iridescent Feather Color in the Jungle Crow Corvus macrorhynchos,” Ornithol. Sci. 11, 59–64.

    Article  CAS  Google Scholar 

  • Lippert, W., Gentil, K., and Morphol, Z. (1959), “Über Lamellare Feinstrukturen Bei Den Schillerschuppen Der Schmetterlinge Vom Urania- And Morpho-typ,” Oekol. Tiere 48, 115–122.

    Google Scholar 

  • Liu, F., Yin, H. W., Dong, B. Q., Qing, Y. H., Zhao, L., Meyer, S., Liu, X. H., Zi, J. and Chen, B. (2008), “Inconspicuous Structural Coloration in the Elytra of Beetles Chlorophila obscuripennis (Coleoptera),” Phys. Rev. E 77, 012901.

    Google Scholar 

  • Liu, F., Bong, B. Q., Liu, X. H., Zheng, Y. M. and Zi, J. (2009), “Structural Color Change in Longhorn Beetles Tmesisternus isabellae,” Opt. Express 17, 16183–16191.

    Article  CAS  Google Scholar 

  • Liu, F., Wang, G. B., Jiang, L. P. and Dong, B. Q. (2010), “Structural Colouration and Optical Effects in the Wings of Papilio peranthus,” J. Opt. 12, 065301.

    Article  Google Scholar 

  • Luke, S. M., Hallam, B. T. and Vukusic, P. (2010), “Structural Optimization for Broadband Scattering in Several Ultra-Thin White Beetle Scales,” Appl. Opt. 49, 4246–4254.

    Article  Google Scholar 

  • Lythgoe, J. N. and Shand, J. (1989), “The Structural Basis for Iridescent Colour Changes in Dermal and Corneal Iridophores In Fish,” J. Exp. Biol. 141, 313–325.

    Google Scholar 

  • Maia, R., Caetano, J. V. O., Bao, S. N. and Macedo, R. H. (2009), “Iridescent Structural Colour Production in Male Blue-Black Grassquit Feather Barbules: The Role of Keratin and Melanin,” J. R. Soc. Interface 6, S203–S211.

    Article  CAS  Google Scholar 

  • Mason, C. W. (1926), “Structural Colors in Insects. I,” J. Phys. Chem. 30, 383–395.

    Article  Google Scholar 

  • Mason, C. W. (1927), “Structural Colors in Insects-II,” J. Phys. Chem. 31, 321–354.

    Article  Google Scholar 

  • Mäthger, L. M., Land, M. F., Siebeck, U. E. and Marshall, N. J. (2003), “Rapid Colour Changes in Multilayer Reflecting Stripes in the Paradise Whiptail, Pentapodus paradiseus,” J. Exp. Biol. 206, 3607–3613.

    Article  CAS  Google Scholar 

  • Mäthger, L. M., Denton, E. J., Marshall, N. J. and Hanlon, R. T. (2009), “Mechanisms and Behavioural Functions of Structural Coloration in Cephalopods,” J. R. Soc. Interface 6, S149–S163.

    Article  Google Scholar 

  • McClain, E., Seely, M. K., Hadley, N. F. and Fray, V. (1985), “Wax Blooms in Tenebrionid Beetles of the Namib Desert: Correlations with Environment,” Ecology 66, 112–118.

    Article  Google Scholar 

  • McKenzie, D. R. and Large, M. (1998), “Multilayer Reflectors in Animals using Green and Gold Beetles as Contrasting Examples,” J. Exp. Biol. 201, 1307–1313.

    Google Scholar 

  • McKenzie, D. R., Yin, Y. and McFall, W. D. (1995), “Silvery Fish Skin as an Example of a Chaotic Reflector,” Pro. Mathem. Phys. Sci. 451, 579–584.

    Article  Google Scholar 

  • Mouchet, S., Deparis, O. and Vigneron, J. P. (2012), “Unexplained High Sensitivity of the Reflectance of Porous Natural Photonic Structures to the Presence of Gases and Vapors in the Atmosphere,” In: Nanophotonics IV, Proc. SPIE 8424, 842425.

    Google Scholar 

  • Nagaishi, H. and Oshima, N. (1992), “Ultrastructure of the Motile Iridophores of the Neon Tetra,” Zool. Sci. 9, 65–75.

    Google Scholar 

  • Nagaishi, H., Oshima, N. and Fujii, R. (1990), “Light-Reflecting Properties of the Iridophores of the Neon Tetra, Paracheirodon innesi,” Comp. Biochem. Physiol. 95A, 337–341.

    Google Scholar 

  • Neville, A. C. and Caveney, S. (1969), “Scarabaeid Beetle Exocuticle as an Optical Analogue of Cholesteric Liquid Crystals,” Biol. Rev. 44, 531–562.

    Article  CAS  Google Scholar 

  • Oshima, N. and Fujii, R. (1987), “Mobile Mechanisms of Blue Damselfish (Chrysiptera cyanea) Iridophores,” Cell Motil. Cytoskel. 8, 85–90.

    Article  Google Scholar 

  • Otaki, J. M. (2008), “Physiologically Induced Color-Pattern Changes in Butterfly Wings: Mechanistic and Evolutionary Implications,” J. Insect Phys. 54, 1099–1112.

    Article  CAS  Google Scholar 

  • Palmer, C. and Loewen, E. (2005), Diffraction Grating Handbook, sixth ed., Newport Corporation, New York.

    Google Scholar 

  • Parker, A. R. (1995), “Discovery of Functional Iridescence and its Coevolution with Eyes in the Phylogeny of Ostracoda (Crustacea), Proc. R. Soc. London, Ser. B, 262, 349–355.

    Article  Google Scholar 

  • Parker, A. R. (2000), “515 Million Years of Structural Colour,” J. Opt. A: Pure Appl. Opt. 2, R15–R28.

    Article  Google Scholar 

  • Parker, A. R. (2004), “A Vision for Natural Photonics,” Phil. Trans. R. Soc. Lond. A 362, 2709–2720.

    Article  Google Scholar 

  • Parker, A. R. (2009), “Natural Photonics for Industrial Inspiration,” Philos. Transact. A Math. Phys. Eng. Sci. 367, 1759–1782.

    Article  CAS  Google Scholar 

  • Parker, A. R. and Townley, H. E. (2007), “Biomimetics of Photonic Nanostructures,” Nat. Nanotechnol. 2, 347–353.

    Article  CAS  Google Scholar 

  • Parker, A. R., McKenzie, D. R. and Ahyong, S. T. (1998), “A Unique Form of Light Reflector and the Evolution of Signalling in Ovalipes (Crustacea: Decapoda: Portunidae),” Proc. R. Soc. Lond. B Biol. 265, 861–867.

    Article  Google Scholar 

  • Parker, A. R., McPhedran, R. C., McKenzie, D. R., Botten, L. C. and Nicorovici, N. A. (2001), “Photonic Engineering: Aphrodite’s Iridescence,” Nature 409, 36–37.

    Article  CAS  Google Scholar 

  • Parker, A. R., Welch, V. L., Driver, D. and Martini, N. (2003), “Structural Colour: Opal Analogue Discovered in a Weevil,” Nature 426, 786–787.

    Article  CAS  Google Scholar 

  • Poladian, L., Wickham, S., Lee, K. and Large, M. C. J. (2009), “Iridescence from Photonic Crystals and Its Suppression in Butterfly Scales,” J. R. Soc. Interface 6, S233–S242.

    Article  Google Scholar 

  • Pouya, C., Stavenga, D. G. and Vukusic, P. (2011), “Discovery of Ordered and Quasi-Ordered Photonic Crystal Structures in the Scales of the Beetle Eupholus magnificus,” Opt. Express 19, 11355–11364.

    Article  CAS  Google Scholar 

  • Prum, R. O. (2006), “Anatomy, Physics, and Evolution of Structural Colors,” In: Bird Coloration: Mechanisms and Measurements (eds. G. E. Hill and K. J. McGraw) Harvard University Press, Boston.

    Google Scholar 

  • Prum, R. O. and Torres, R. H. (2003), “A Fourier Tool for the Analysis of Coherent Light Scattering by Bio-Optical Nanostructures,” Integr. Comp. Biol. 43, 591–602.

    Article  Google Scholar 

  • Prum, R. O., Torres, R., Kovach, C., Williamson, S., and Goodman, S. M. (1999), “Coherent Light Scattering by Nanostructured Collagen Arrays in the Caruncles of the Malagasy Asities (Eurylaimidae: aves),” J. Exp. Biol. 202, 3507–3522.

    Google Scholar 

  • Prum, R. O., Cole, J. A., and Torres, R. H. (2004), “Blue Integumentary Structural Colors in Dragonflies (Odonata) are not Produced by Incoherent Tyndall Scattering,” J. Exp. Biol. 207, 3999–4009.

    Article  Google Scholar 

  • Rassart, M., Colomer, J. F., Tabarrant, T., and Vigneron, J. P. (2008), “Diffractive Hygrochromic Effect in the Cuticle of the Hercules Beetle Dynastes hercules,” New J. Phys. 10, 033014.

    Article  Google Scholar 

  • Rassart, M., Simonis, P., Bay, A., Deparis, O. and Vigneron, J. P. (2009), “Scale Coloration Change following Water Absorption in the Beetle Hoplia coerulea (Coleoptera),” Phys. Rev. E 80, 031910.

    Google Scholar 

  • Saito, A., Miyamura, Y., Ishikawa, Y., Murase, J., Akai-Kasaya, M. and Kuwahara, Y. (2009), “Reproduction, Mass-Production, and Control of the Morpho-Butterfly’s Blue,” In: Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II (eds. T. J. Suleski, W. V. Schoenfeld and J. J. Wang), Proceedings of SPIE 7205, 720506.

    Google Scholar 

  • Saranathan, V., Osuji, C. O., Mochrie, S. G. J., Noh, H., Narayanan, S., Sandy, A., Dufresne, E. R. and Prum, R. O. (2010), “Structure, Function, and Self-Assembly of Single Network Gyroid (I4132) Photonic Crystals in Butterfly Wing Scales,” PNAS 107, 11676–11681.

    Article  CAS  Google Scholar 

  • Schultz, T. D. and Rankin, M. A. (1985), “The Ultrastructure of Epicuticular Interference Reflectors of Tiger Beetles (Cicindela),” J. Exp. Biol. 117, 88–110.

    Google Scholar 

  • Seago, A. E., Brady, P., Vigneron, J. P. and Schultz, T. D. (2009), “Gold Bugs and Beyond: A Review of Iridescence and Structural Colour Mechanisms in Beetles (Coleoptera),” J. R. Soc. Interface 6, S165–S184.

    Article  Google Scholar 

  • Sharma, V., Crne, M., Park, J. O. and Srinivasarao, M. (2009), “Structural Origin of Circularly Polarized Iridescence in Jeweled Beetles,” Science 325, 449–451.

    Article  CAS  Google Scholar 

  • Shawkey, M. D., Morehouse, N. I. and Vukusic, P. (2009), “A Protean Palette: Colour Materials and Mixing in Birds and Butterflies,” J. R. Soc. Interface 6, S221–S231.

    Article  Google Scholar 

  • Shawkey, M. D., D’Alba, L., Wozny, J., Eliason, C., Koop, J. A. and Jia, L. (2011), “Structural Color Change following Hydration and Dehydration of Iridescent Mourning Dove (Zenaida macroura) Feathers,” Zool. 114, 59–68.

    Article  Google Scholar 

  • Shevtsova, E., Hansson, C., Janzen, D. H. and Kjærandsen, J. (2011), “Stable Structural Color Patterns Displayed on Transparent Insect Wings,” PNAS 108, 668–673.

    Article  CAS  Google Scholar 

  • Simonis, P. and Vigneron, J. P. (2011), “Structural Color Produced by a Three-Dimensional Photonic Polycrystal in the Scales of a Longhorn Beetle: Pseudomyagrus waterhousei (Coleoptera: Cerambicidae),” Phys. Rev. 83, 011908.

    Google Scholar 

  • Srinivasarao, M. (1999), “Nano-Optics in the Biological World: Beetles, Butterflies, Birds, and Moths,” Chem. Rev. 99, 1935–1961.

    Article  CAS  Google Scholar 

  • Stavenga, D. G. (2009), “Surface Colors of Insects: Wings and Eyes,” In: Functional Surfaces in Biology (ed. S. N. Gorb), Springer, Netherlands.

    Chapter  Google Scholar 

  • Stavenga, D. G., Leertouwer, H. L., Marshall, N. J., and Osorio, D. (2010), “Dramatic Colour Changes in a Bird of Paradise Caused by Uniquely Structured Breast Feather Barbules,” P. Roy. Soc. B 278, 2098–2104.

    Article  Google Scholar 

  • Sun, J., Bhushan, B., and Tong, J. (2013), “Structural Coloration in Nature,” RSC Advances 3, 14862–14899.

    Article  CAS  Google Scholar 

  • Sundar, V. C., Yablon, A. D., Grazul, J. L., Ilan, M. and Aizenberg, J. (2003), “Fiber-Optical Features of a Glass Sponge,” Nature 424, 899–900.

    Article  CAS  Google Scholar 

  • Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M. and Stone, M. O. (2008), “Cephalopod Coloration Model. I. Squid Chromatophores and Iridophores,” JOSA A 25, 588–599.

    Article  Google Scholar 

  • Tamáska, I., Kertész, K., Vértesy, Z., Bálint, Z., Kun, A., Yen S. H. and Biró, L. P. (2013), “Color Changes upon Cooling of Lepidoptera Scales Containing Photonic Nanoarchitectures,” Key Engineering Materials 543, 18–21.

    Article  Google Scholar 

  • Thyl–én, L., Qiu, M. and Anand, S. (2004), “Photonic Crystals – A Step Towards Integrated Circuits for Photonics,” Chem. Phys. Chem. 5, 1268–1283.

    Google Scholar 

  • Trzeciak, T. M. and Vukusic, P. (2009), “Photonic Crystal Fiber in the Polychaete Worm Pherusa sp.,” Phys. Rev. E 80, 061908.

    Google Scholar 

  • Trzeciak, T. M., Wilts, B. D., Stavenga, D. G., and Vukusic, P. (2012), “Variable Multilayer Reflection together with Long-Pass Filtering Pigment Determines the Wing Coloration of Papilionid Butterflies of the Nireus Group,” Opt. Express 20, 8877–8890.

    Article  Google Scholar 

  • Vigneron, J. P. and Simonis P. (2010), “Structural Colours,” Adv. Insect Physiol. 38, 181–218.

    Google Scholar 

  • Vigneron, J. P. and Simonis, P. (2012), “Natural Photonic Crystals,” J. Phys. B Condensed Matter. 20, 4032–4036.

    Article  CAS  Google Scholar 

  • Vigneron, J. P., Colomer, J. F., Vigneron, N. and Lousse, V. (2005), “Natural Layer-by-layer Photonic Structure in the Squamae of Hoplia coerulea (Coleoptera),” Phys. Rev. E 72, 061904.

    Google Scholar 

  • Vigneron, J. P., Colomer, J. F., Rassart, M., Ingram, A. L, and Lousse, V. (2006), “Structural Origin of the Colored Reflections from the Black-Billed Magpie Feathers,” Phys. Rev. E 73, 021914.

    Google Scholar 

  • Vigneron, J. P., Pasteels, J. M., Windsor, D. M., Vértesy, Z., Rassart, M., Seldrum, T., Dumont, J., Deparis, O., Lousse, V., Biró, L. P., Ertz, D. and Welch, V. (2007), “Switchable Reflector in the Panamanian Tortoise Beetle Charidotella egregia (Chrysomelidae: Cassidinae),” Phys. Rev. E 76, 031907.

    Google Scholar 

  • Vigneron, J. P., Rassart, M., Simonis, P., Colomer, J. F., and Bay, A. (2009), “Possible Uses of the Layered Structure Found in the Scales of Hoplia coerulea (Coleoptera),” In: Biomimetics and Bioinspiration (eds. R. J. Martín-Palma and A. Lakhtakia), Proc. of SPIE 7401, 74010B.

    Google Scholar 

  • Vignolini, S., Rudall, P. J., Rowland, A. V., Reed, A., Moyroud, E., Faden, R. B., Baumberg, J. J., Glover, B. J. and Steiner, U. (2012), “Pointillist Structural Color in Pollia Fruit,” Proc. Natl. Acad. Sci. USA 109, 15712–15715.

    Article  CAS  Google Scholar 

  • Vukusic, P. (2010), “An Introduction to Bio-Inspired Design,” Contact Lens Spectrum http://www.clspectrum.com/printarticle.aspx?articleID=104164.

  • Vukusic, P. and Sambles, J. R. (2003), “Photonic Structures in Biology,” Nature 424, 852–855.

    Article  CAS  Google Scholar 

  • Vukusic, P., Sambles, J. R., Lawrence, C. R. and Wootton R. J. (1999), “Quantified Interference and Diffraction in Single Morpho Butterfly Scales,” Proc. R. Soc. Lond. B 266, 1403–1411.

    Article  Google Scholar 

  • Vukusic, P., Sambles, J. R. and Lawrence, C. R. (2000), “Colour Mixing in Wing Scales of a Butterfly,” Nature 404, 457.

    Article  CAS  Google Scholar 

  • Vukusic, P., Wootton, R. J. and Sambles, J. R. (2004), “Remarkable Iridescence in the Hindwings of the Damselfly Neurobasis chinensis chinensis (Linnaeus) (Zygoptera: Calopterygidae),” Proc. R. Soc. Lond. B 271, 595–601.

    Article  CAS  Google Scholar 

  • Vukusic, P., Hallam, B. and Noyes, J. (2007), “Brilliant Whiteness in Ultrathin Beetle Scales,” Science 315, 348.

    Article  CAS  Google Scholar 

  • Watanabe, K., Hoshino, T., Kanda, K., Haruyama, Y. and Matsui, S. (2005), “Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure,” Jap. J. Appl. Phys. 44, L48–L50.

    Article  CAS  Google Scholar 

  • Welch, V. and Vigneron, J. (2007), “Beyond Butterflies—The Diversity of Biological Photonic Crystals,” Opt. Quantum Electron. 39, 295–303.

    Article  CAS  Google Scholar 

  • Welch, V., Vigneron, J. and Parker, A. (2005), “The Cause of Colouration in the Ctenophore Beroë cucumis,” Curr.Biol. 15, R985–R986.

    Article  CAS  Google Scholar 

  • Welch, V., Vigneron, J. P., Parker, A. and Lousse, V. (2006), “Optical Properties of the Iridescent Organ of the Comb-Jellyfish Beroë cucumis (Ctenophora),” Phys. Rev. E 73, 041916.

    Google Scholar 

  • Welch, V., Lousse, V., Deparis, O., Parker, A. and Vigneron, J. P. (2007), “Orange Reflection from a Three-Dimensional Photonic Crystal in the Scales of the Weevil Pachyrrhynchus congestus pavonius (Curculionidae),” Phys. Rev. E 75, 041919.

    Google Scholar 

  • Whitney, H. M., Kolle, M., Andrew, P., Chittka, L., Steiner, U. and Glover, B. J. (2009), “Floral Iridescence, Produced by Diffractive Optics, Acts as a Cue for Animal Pollinators,” Science 323, 130–133.

    Article  CAS  Google Scholar 

  • Wilts, B. D., Leertouwer, H. L., and Stavenga, D. G. (2009), “Imaging Scatterometry and Microspectrophotometry of Lycaenid Butterfly Wing Scales with Perforated Multilayers,” J. R. Soc. Interface 6, S193–S202.

    Article  Google Scholar 

  • Wilts, B. D., Pirih, P., and Stavenga, D. G. (2011), “Spectral Reflectance Properties of Iridescent Pierid Butterfly Wings,” J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 197, 693–702.

    Article  Google Scholar 

  • Wilts, B. D., Michielsen, K., De Raedt, H., and Stavenga, D. G. (2012), “Hemispherical Brillouin Zone Imaging of a Diamond-Type Biological Photonic Crystal,” J. R. Soc. Interface 9, 1609–1614.

    Article  Google Scholar 

  • Yoshioka, S. and Kinoshita, S. (2002), “Effect of Macroscopic Structure in Iridescent Color of the Peacock Feathers,” Forma 17, 169–181.

    Google Scholar 

  • Yoshioka, S. and Kinoshita, S. (2004), “Wavelength-Selective and Anisotropic Light-Diffusing Scale on the Wing of the Morpho Butterfly,” Proc. Biol. Sci. 271, 581–587.

    Article  Google Scholar 

  • Yoshioka, S. and Kinoshita, S. (2007), “Polarization-Sensitive Color Mixing in the Wing of the Madagascan Sunset Moth,” Opt. Express 15, 2691–2701.

    Article  Google Scholar 

  • Yoshioka, S, Nakamura, E. and Kinoshita, S. (2007), “Origin of Two-Color Iridescence in Rock Dove’s Feather,” J. Phys. Soc. Japan 76, 013801.

    Article  CAS  Google Scholar 

  • Yoshioka, S. Matsuhana, B. Tanaka, S. Inouye, Y. Oshima, N. and Kinoshita, S. (2011), “Mechanism of Variable Structural Colour in the Neon Tetra: Quantitative Evaluation of the Venetian Blind Model,” J. R. Soc. Interface 8, 56–66.

    Article  Google Scholar 

  • Yu, K. L., Fan T. X., Lou, S. and Zhang, D. (2013), “Biomimetic Optical Materials: Integration of Nature’s Design for Manipulation of Light,” Prog. Mater. Sci. 58, 825–873

    Article  Google Scholar 

  • Zhang, W., Zhang, D., Fan, T., Gu, J., Ding, J., Wang, H., Guo, Q. X. and Ogawa, H. (2009), “Novel Photoanode Structure Templated from Butterfly Wing Scales,” Chem. Mater. 21, 33–40.

    Article  CAS  Google Scholar 

  • Zi, J., Yu, X., Li, Y., Hu, X., Xu, C., Wang, X., Lui, X. and Fu, R. (2003), “Coloration Strategies in Peacock Feathers,” Proc. Natl. Acad. Sci. USA 100, 12576–12578.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Structural Coloration. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_22

Download citation

Publish with us

Policies and ethics