Biomimetics pp 861-877 | Cite as

Structure and Mechanical Properties of Nacre

  • Bharat BhushanEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)


Many biological organisms exhibit unique chemical and physical properties (Lowenstam and Werner 1989). They often use components that contain both inorganic and organic compounds with complex structures, and are often hierarchically organized, ranging from nano- to meso-levels. The hierarchical structure provides a high tolerance against defects at all length scales. Most biological materials are multifunctional and often tend to have self-healing abilities (Vincent 1991; Ratner and Bryant 2004). In two-component biological materials, such as bones, teeth, and abalone shells, the mineral component provides high mechanical strength and the organic component hinders crack propagation, which increases fracture toughness responsible for high durability (Meyers et al. 2006). A biomineral system, which has been much investigated, is the inner layer of abalone, called nacre.


  1. Abbot, R., Tucker, D., and Peter, S. (2000), Compendium of Seashells, fourth ed., Odyssey Publishing, El Cajon, California.Google Scholar
  2. Barthelat, F. (2010), “Nacre from Mollusk Shells: A Model for High-performance Structural Materials,” Bioinspir. Biomim. 5, 035001-1–8.CrossRefGoogle Scholar
  3. Barthelat, F. and Zhu, D. J. (2011), “A Novel Biomimetic Material Duplicating the Structure and Mechanics of Natural Nacre,” J. Mater. Res. 26, 1203–1215.CrossRefGoogle Scholar
  4. Barthelat, F., Li, C. M., Comi, C. and Espinosa, H. D. (2006), “Mechanical Properties of Nacre Constituents and Their Impact on Mechanical Performance,” J. Mater. Res. 21, 1977–1986.CrossRefGoogle Scholar
  5. Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. and Espinosa, H. D. (2007), “On the Mechanics of Mother-of-Pearl: A Key Feature in the Material Hierarchical Structure,” J. Mech. Phys. Solids 55, 306–337.CrossRefGoogle Scholar
  6. Bhushan, B. (2009), “Biomimetics: Lessons from Nature- An Overview,” Phil. Trans. R. Soc. A 367, 1445–1486.Google Scholar
  7. Bonderer, L. J., Studart, A. R. and Gauckler, L. J. (2008), “Bioinspired Design and Assembly of Platelet Reinforced Polymer Films,” Science 319, 1069–1073.CrossRefGoogle Scholar
  8. Bruet, B. J. F., Qi, H. J., Boyce, M. C., Panas, R., Tai, K., Frick, L., and Ortiz, C. (2005), “Nanoscale Morphology and Indentation of Individual Nacre Tablets from the Gastropod Mollusc Trochus niloticus,” J. Mater. Res. 20, 2400–2419.CrossRefGoogle Scholar
  9. Bueno, S. and Baudin, C. (2009), “Design and Processing of a Ceramic Laminate with High Toughness and Strong Interfaces,” Compos. Part A 40, 137–143.CrossRefGoogle Scholar
  10. Cartwright, J. H. E. and Checa, A. G. (2007), “The Dynamics of Nacre Self-assembly,” J. R. Soc. Interface 4, 491–504.CrossRefGoogle Scholar
  11. Checa, A. G., Cartwright, J. H. E., Willinger, M. G. (2011), “Mineral Bridges in Nacre,” J. Struct. Biol. 176, 330–339.CrossRefGoogle Scholar
  12. Chen, R. F., Wang, C. A., Huang, Y. and Le, H. R. (2008), “An Efficient Biomimetic Process for Fabrication of Artificial Nacre with Ordered-Nano Structure,” Mater. Sci. Eng. C 28, 218–222.CrossRefGoogle Scholar
  13. Currey, J. D. (1977), “Mechanical Properties of Mother of Pearl in Tension,” Proc. R. Soc. Lond. B 196, 443–463.CrossRefGoogle Scholar
  14. Deville, S., Saiz, E., Nalla, R. K., and Tomsia, A. P. (2006), “Freezing as a Path to Build Complex Composites,” Science 27, 515–518.CrossRefGoogle Scholar
  15. Deville, S., Saiz, E. and Tomsia, A. P. (2008), “Using Ice to Mimic Nacre: From Structural Applications to Artificial Bone,” in: Handbook of Biomineralization: Biomimetic and Bioinspired Chemistry, (eds. P. Behrens and E. Bäuerlein), John Wiley, Weinheim, Germany.Google Scholar
  16. Gunnison, K. E., Sarikaya, M., Liu, J. and Aksay, I. A. (1991), “Structure-mechanical Property Relationships in a Biological Ceramic-polymer Composite: Nacre,” MRS Proc., 255, 171–184.Google Scholar
  17. Jackson, A. P., Vincent, J. F. V. and Turner, R. M. (1988), “The Mechanical Design of Nacre,” Proc. R. Soc. Lond. B 234, 415–440.CrossRefGoogle Scholar
  18. Katti, D. R. and Katti, K. S. (2001), “3D Finite Element Modeling of Mechanical Response in Nacre-based Hybrid Nanocomposites,” J. Mater. Sci. 36, 1411–1417.Google Scholar
  19. Launey, M. E., Munch, E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2010), “A Novel Biomimetic Approach to the Design of High-performance Ceramic-metal Composites,” J. R. Soc. Interface 7, 741–753.CrossRefGoogle Scholar
  20. Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. and Chang, M. (2004), “Nanoscale Structural and Mechanical Characterization of a Natural Nanocomposite Material: The Shell of Red Abalone,” Nano Lett. 4, 613–617.CrossRefGoogle Scholar
  21. Li, X. D., Xu, Z. H. and Wang, R. Z. (2006), “In Situ Observation of Nanograin Rotation and Deformation in Nacre,” Nano Lett. 6, 2301–2304.CrossRefGoogle Scholar
  22. Lin, A. Y. M., Chen, P. Y. and Meyers, M. A. (2008). “The Growth of Nacre in the Abalone Shell,” Acta Biomater. 4, 131–138.CrossRefGoogle Scholar
  23. Lin, T. H., Huang, W. H., Jun, I. K., and Jiang, P. (2009), “Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field,” Chem. Mater. 21, 2039–2044.CrossRefGoogle Scholar
  24. Liu, K. S. and Jiang, L. (2011), “Bio-inspired Design of Multiscale Structures for Function Integration,” Nano Today 6, 155–175.CrossRefGoogle Scholar
  25. Lowenstam, H. A. and Weiner, S. (1989), On Biomineralization, Oxford University Press, New York.Google Scholar
  26. Luz, G. M. and Mano, J. F. (2009), “Biomimetic Design of Materials and Biomaterials Inspired by the Structure of Nacre,” Phil. Trans. R. Soc. A. 367, 1587–1605.CrossRefGoogle Scholar
  27. Menig, R., Meyers, M. H., Meyers, M. A. and Vecchio, K. S. (2000), “Quasi-static and Dynamic Mechanical Response of Haliotis rufescens (Abalone) Shells,” Acta mater. 48, 2383– 2398.CrossRefGoogle Scholar
  28. Meyers, M. A. and Chawla, K. K. (2008), Mechanical Behavior of Materials, Cambridge University Press, New York.Google Scholar
  29. Meyers, M. A., Lin, A. Y. M., Seki, Y., Chen, P. Y., Kad, B. K., Bodde, S. (2006), “Structural Biological Composites: An Overview,” JOM, July, 35–41.Google Scholar
  30. Meyers, M. A., Chen, P. Y., Lin, A.Y.M. and Seki, Y. (2008), “Biological Materials: Structure and Mechanical Properties,” Prog. Mater. Sci. 53, 1–206.CrossRefGoogle Scholar
  31. Meyers, M. A., Chen, P. Y., Lopez, M. I., Seki, Y. and Lin, A. Y. M. (2011), “Biological Materials: A Materials Science Approach,” J. Mech. Behav. Biomed. Mater. 4, 626–657.CrossRefGoogle Scholar
  32. Mohanty, B., Katti, K. S., Katti, D. R. and Verma, D., 2006, “Dynamic Nanomechanical Response of Nacre,” J. Mater. Res. 21, 2045–2051.CrossRefGoogle Scholar
  33. Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., and Ritchie, R. O. (2008) “Tough Bio-inspired Hybrid Materials,” Science 322, 1516–1520.CrossRefGoogle Scholar
  34. Ortiz, C. and Boyce, M. C. (2008), “Bioinspired Structural Materials,” Science 319, 1053–1054.CrossRefGoogle Scholar
  35. Podsiadlo, P., Paternel, S., Rouillard J. M., Zhang, Z. F., Lee, J., Lee, J. W., Gulari, L. and Kotov, N. A. (2005), “Layer-by-layer Assembly of Nacre-like Nanostructured Composites with Antimicrobial Properties,” Langmuir 21, 11915–11921.CrossRefGoogle Scholar
  36. Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J. D., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A. and Kotov, N. A. (2007), “Ultrastrong and Stiff Layered Polymer Nanocomposites,” Science 318, 80–83.CrossRefGoogle Scholar
  37. Podsiadlo, P., Kaushik, A. K., Shim, B. S., Agarwal, A., Tang, Z., Waas, A. M., Arruda, E. M. and Kotov, N. A. (2008), “Can Nature’s Design be Improved Upon? High Strength, Transparent Nacre-like Nanocomposites with Double Network of Sacrificial Cross Links,” J. Phys. Chem. B 112, 14359–14363.CrossRefGoogle Scholar
  38. Ratner, B. D. and Bryant, S. J. (2004), “Biomaterials: Where We Have Been and Where We are Going,” Annu. Rev. Biomed. Eng. 6, 41–75.CrossRefGoogle Scholar
  39. Rubner, M. (2003), “Synthetic Sea Shell,” Nature 423, 925–926.CrossRefGoogle Scholar
  40. Sarikaya, M., Gunnison, K. E., Yasrebi, M. and Aksay, I. A. (1989), “Mechanical Property-Microstructural Relationships in Abalone Shell,” MRS Proc., 174, 109.Google Scholar
  41. Schäffer, T. E., Ionescu-Zanetti, C., Proksch, R., Fritz, M., Walters, D. A., Almqvist, N., Zaremba, C. M., Belcher, A. M., Smith, B. L., Stucky, G. D., Morse, D. E. and Hansma, P. K. (1997), “Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth Through Mineral Bridges?,” Chem. Mater. 9, 1731–1740.CrossRefGoogle Scholar
  42. Song, F., Zhang, X. H. and Bai, Y. L. (2002), “Microstructure and Characteristics in the Organic Matrix Layers of Nacre,” J. Mater. Res. 17, 1567–1570.CrossRefGoogle Scholar
  43. Song, F., Soh, A. K. and Bai, Y. L. (2003), “Structural and Mechanical Properties of the Organic Matrix Layers of Nacre,” Biomater. 24, 3623–3631.CrossRefGoogle Scholar
  44. Sun, J. and Bhushan, B. (2012), “Hierarchical Structure and Mechanical Properties of Nacre: A Review,” RSC Advances 2, 7617–7632.CrossRefGoogle Scholar
  45. Tang, Z. Y., Kotov, N. A., Magonov, S. and Ozturk, B. (2003), “Nanostructured Artificial Nacre,” Nature Mater. 2, 413–418.CrossRefGoogle Scholar
  46. Verma, D., Katti, K. and Katti, D. (2007), “Nature of Water in Nacre: A 2D Fourier Transform Infrared Spectroscopic Study,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 67, 784–788.CrossRefGoogle Scholar
  47. Vincent, J. F. V. (1991), Structural Biomaterials, Princeton University Press, Princeton, NJ.Google Scholar
  48. Wachtman, J. B. (1996), Mechanical Properties of Ceramics, Wiley-Interscience, New York.Google Scholar
  49. Walther, A., Bjurhager, I., Malho, J.-M., Ruokolainen, J., Berglund, L. and Ikkala, O. (2010), “Supramolecular Control of Stiffness and Strength in Lightweight High-performance Nacre-mimetic Paper with Fire-shielding Properties,” Angew. Chem. Int. Ed. Engl. 49, 6448–6453.CrossRefGoogle Scholar
  50. Wang, C. A., Huang, Y., Zan, Q. F., Guo, H., and Cai, S. Y. (2000), “Biomimetic Structure Design—A Possible Approach to Change the Brittleness of Ceramics in Nature,” Mater. Sci. Eng. C 11, 9–12.CrossRefGoogle Scholar
  51. Wang, J. F., Cheng Q. F. and Tang, Z. Y. (2012), “Layered Nanocomposites Inspired by the Structure and Mechanical Properties of Nacre,” Chem. Soc. Rev. 41, 1111–1129.CrossRefGoogle Scholar
  52. Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. and Aksay, I. A. (2001), “Deformation Mechanisms in Nacre,” J. Mater. Res. 16, 2485–2493.CrossRefGoogle Scholar
  53. Yourdkhani, M., Pasini, D. and Barthelat, F. (2011), “Multiscale Mechanics and Optimization of Gastropod Shells,” J. Bionic Eng. 8, 357–368.CrossRefGoogle Scholar
  54. Zhang, L. and Krstic, V. D. (1995), “High Toughness Silicon Carbide/Graphite Laminar Composite by Slip Casting,” Theor. Appl. Fract. Mech. 24, 13–19.CrossRefGoogle Scholar
  55. Zhang, S. M., Zhang, J. W., Zhang, Z. J., Dang, H. X., Liu, W. M. and Xue, Q. J. (2004), “Preparation and Characterization of Self-assembled Organic-Inorganic Nacre-like Nanocomposite Thin Films,” Mater. Lett. 58, 2266–2269.CrossRefGoogle Scholar
  56. Zhang, X., Liu, C. L., Wu, W. J. and Wang, J. F. (2006), “Evaporation-induced Self-assembly of Organic-inorganic Ordered Nanocomposite Thin Films that Mimic Nacre,” Mater. Lett. 60, 2086–2089.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations