Skip to main content

Role of Liquid Repellency on Fluid Slip, Fluid Drag, and Formation of Nanobubbles

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

  • 1845 Accesses

Abstract

The reduction of fluid drag is of scientific interest in many fluid flow applications, including micro /nanofluidic systems used in biological, chemical, and medical fields (Bhushan 2016, 2017a, b). Fluid flow is known to have zero slip on liquiphilic surfaces . In the no-slip boundary condition , the relative velocity between a solid wall and liquid flow is zero at the solid-liquid interface (Batchelor 1970).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batchelor, G. K. (1970), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bhushan, B. (2016), Encyclopedia of Nanotechnology, 2nd edition, volumes 1–6, Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. (2017a), Springer Handbook of Nanotechnology, 4th edition, Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. (2017b), Nanotribology and Nanomechanics: An Introduction, 4th edition, Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B., Wang, Y., and Maali, A. (2008), “Coalescence and Movement of Nanobubbles Studied with Tapping Mode AFM and Tip-Bubble Interaction Analysis,” J. Phys.: Condens. Matter 20, 485004.

    Google Scholar 

  • Bhushan, B., Wang, Y., and Maali, A. (2009), “Boundary Slip Study on Hydrophilic, Hydrophobic, and Superhydrophobic Surfaces with Dynamic Atomic Force Microscopy,” Langmuir 25, 8117–8121.

    Article  CAS  Google Scholar 

  • Bhushan, B., Pan, Y., and Daniels, S. (2013), “AFM Characterization of Nanobubble Formation and Slip Condition in Oxygenated and Electrokinetically Altered Fluids,” J. Colloid Interface Sci. 392, 105–116.

    Article  CAS  Google Scholar 

  • Borkent, B. M., Dammer, S. M., Schoenher, H., Vancso, G. J., and Lohse, D. (2007), “Superstability of Surface Nanobubbles,” Phys. Rev. Lett. 98, 204502–204506.

    Google Scholar 

  • Cottin-Bizonne, C., Steinberger, A., Cross, B., Raccurt, O., and Charlaix, E. (2008), “Nanohydrodynamics: The Intrinsic Flow Boundary Condition on Smooth Surfaces,” Langmuir 24, 1165–1172.

    Article  CAS  Google Scholar 

  • Craig, V. S. J. (2011), “Very Small Bubbles at Surfaces—The Nanobubble Puzzle,” Soft Matter 7, 40–48.

    Article  CAS  Google Scholar 

  • Haynes, W. M. (2014), CRC Handbook of Chemistry and Physics, 95th edition, Taylor and Francis Group, Boca Raton, FL.

    Google Scholar 

  • Jing, D. and Bhushan, B. (2013a), “Boundary Slip of Superoleophilic, Oleophobic, and Superoleophobic Surfaces Immersed in Deionized Water, Hexacadene, and Ethylene Glycol,” Langmuir 29, 14691–14700.

    Article  CAS  Google Scholar 

  • Jing, D. and Bhushan, B. (2013b), “Quantification of Surface Charge Density and its Effect on Boundary Slip,” Langmuir 29, 6953–6963.

    Article  CAS  Google Scholar 

  • Jing, D. and Bhushan, B. (2013c), “Effect of Boundary Slip and Surface Charge on the Pressure-Driven Flow,” J. Colloid Interface Sci. 392, 15–26.

    Article  CAS  Google Scholar 

  • Jing, D. and Bhushan, B. (2015), “The Coupling of Surface Charge and Boundary Slip at the Solid-Liquid Interface and Their Combined Effect on Fluid Drag: A Review,” J. Colloid Interface Sci. 454, 152–179.

    Article  CAS  Google Scholar 

  • Joly, L., Ybert, C., Trizac, E., and Bocquet, L. (2006), “Liquid Friction on Charged Surfaces: From Hydrodynamic Slippage to Electrokinetics,” J. Chem. Phys. 125, 204716.

    Article  Google Scholar 

  • Khasnavis, S., Jana, A., Roy, A., Mazumder, M., Bhushan, B., Wood, T., Ghosh, S., Watson, R., and Pahan, K. (2012), “Suppression of Nuclear Factor-κB Activation and Inflammation in Microglia by Physically Modified Saline,” J. Biol. Chem. 287, 29529–29542.

    Article  CAS  Google Scholar 

  • Li, Y. and Bhushan, B. (2015), “The Effect of Surface Charge on the Boundary Slip of Various Oleophilic/phobic Surfaces Immersed in Liquids,” Soft Matter 11, 7680–7695.

    Article  CAS  Google Scholar 

  • Li, D., Jing, D., Pan, Y., Bhushan, B., and Zhao, X. (2016), “Study on the Relationship between Boundary Slip and Nanobubbles on Smooth Hydrophobic Surface,” Langmuir 32, 11287–11294.

    Article  CAS  Google Scholar 

  • Maali, A. and Bhushan, B. (2008), “Slip-Length Measurement of Confined Air Flow Using Dynamic Atomic Force Microscopy,” Phys. Rev. E 78, 027302.

    Google Scholar 

  • Maali, A. and Bhushan, B. (2012), “Measurement of Slip Length on Superhydrophobic Surfaces,” Phil. Trans. R. Soc. A 370, 2304–2320.

    Article  CAS  Google Scholar 

  • Maali, A. and Bhushan, B. (2013), “Nanobubbles and Their Role in Slip and Drag,” J. Phys.: Condens. Matter 25, 184003.

    Google Scholar 

  • Maali, A., Colin, S., and Bhushan, B. (2016), “Slip Length Measurement of Gas Flow,” Nanotechnology 27, 374004.

    Article  Google Scholar 

  • Mazumder, M. and Bhushan, B. (2011), “Propensity and Geometrical Distribution of Surface Nanobubbles: Effect of Electrolyte, Roughness, pH, and Substrate Bias,” Soft Matter 7, 9184–9196.

    Article  CAS  Google Scholar 

  • Ou, J., Perot, B., and Rothstein, J. P. (2004), “Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces,” Phys. Fluids 16, 4635–4643.

    Article  CAS  Google Scholar 

  • Pan, Y. and Bhushan, B. (2013), “Role of Surface Charge on Boundary Slip in Fluid Flow,” J. Colloid Interface Sci. 392, 117–121.

    Article  CAS  Google Scholar 

  • Pan, Y., Bhushan, B., and Zhao, X. (2014), “The Study of Surface Wetting, Nanobubbles and Boundary Slip with an Applied Voltage: A Review,” Beilstein J. Nanotechnol. 5, 1042–1065.

    Article  Google Scholar 

  • Seddon, J. R. T. and Lohse, D. (2011), “Nanobubbles and Micropancakes: Gaseous Domains on Immersed Substrates,” J. Phys: Condens. Matter 23, 133001.

    Google Scholar 

  • Seddon, J. R. T., Kooij, E. S., Poelsema, B., Zandvliet, H. J. W., and Lohse, D. (2011), “Surface Bubble Nucleation Stability,” Phys. Rev. Lett. 106, 056101.

    Google Scholar 

  • Shirtcliffe, N. J., McHale, G., Newton, M. I., and Zhang, Y. (2009), “Superhydrophobic Copper Tubes with Possible Flow Enhancement and Drag Reduction,” ACS Appl. Mater. Interfaces 1, 1316–1323.

    Article  CAS  Google Scholar 

  • Tretheway, D. C. and Meinhart, C. D. (2004), “A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels,” Phys. Fluids 16, 1509–1515.

    Article  CAS  Google Scholar 

  • Uchida, T., Oshita, S., Ohmori, M., Tsuno, T., Soejima, K., Shinozaki, S., Take, Y., and Mitsuda, K. (2011), “Transmission Electron Microscopic Observations of Nanobubbles and Their Capture of Impurities in Wastewater,” Nanoscale Res. Lett. 6, 295–304.

    Article  Google Scholar 

  • Vinogradova, O. I. (1995), “Drainage of a Thin Liquid-Film Confined between Hydrophobic Surfaces,” Langmuir 11, 2213–2220.

    Article  CAS  Google Scholar 

  • Wang, Y. and Bhushan, B. (2010), “Boundary Slip and Nanobubble Study in Micro/Nanofluidics with Atomic Force Microscope,” Soft Matter 6, 29–66.

    Article  CAS  Google Scholar 

  • Wang, Y., Bhushan, B., and Maali, A. (2009a), “Atomic Force Microscopy Measurement of Boundary Slip on Hydrophilic, Hydrophobic, and Superhydrophobic Surfaces,” J. Vac. Sci. Technol. A 27, 754–760.

    Article  CAS  Google Scholar 

  • Wang, Y., Bhushan, B., and Zhao, X. (2009b), “Nanoindents Produced by Nanobubbles on Ultrathin Polystyrene Films in Water,” Nanotechnology 20, 045301.

    Article  Google Scholar 

  • Watanabe, K., Udagawa, Y., and Udagawa, H. (1999), “Drag Reduction of Newtonian Fluid in Circular Pipe with a Highly Water-Repellent Wall,” J. Fluid Mech. 381, 225–238.

    Article  CAS  Google Scholar 

  • Yang, J, W., Duan, J. M., Fornasiero, D., and Ralston, J. (2003), “Very Small Bubble Formation at the Solid-Water Interface,” J. Phys. Chem. B 107, 6139–6147.

    Article  CAS  Google Scholar 

  • Zhang, X. H., Zhang, X., Sun, J., Zhang, Z., Li, G., Fang, H., Xiao, X., Zeng, X., and Hu, J. (2007), “Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphite-Water Interface,” Langmuir 23, 1778–1783.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Role of Liquid Repellency on Fluid Slip, Fluid Drag, and Formation of Nanobubbles. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_18

Download citation

Publish with us

Policies and ethics