Advertisement

Biomimetics pp 665-701 | Cite as

Bioinspired Strategies for Water Collection and Water Purification

  • Bharat BhushanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)

Abstract

Fresh water sustains human life and is vital for human health. There is enough fresh water for everyone on Earth. However, due to bad economics or poor infrastructure, water scarcity affects more than 40% of the global population and is projected to rise. It is estimated that more than 800 million people do not have access to clean water and over 1.7 billion people are currently living in river basins where water use exceeds recharge.

References

  1. Agre, P., Sasaki, S., and Chrispeels, M. J. (1993), “Aquaporins: A Family of Water Channel Proteins,” Am. J. Physiol. 265, F461.CrossRefGoogle Scholar
  2. Andrews, H. G., Eccles, E. A., Schofield, W. C. E., and Badyal, J. P. S. (2011), “Three-Dimensional Hierarchical Structures for Fog Harvesting,” Langmuir 27, 3798–3802.CrossRefGoogle Scholar
  3. Anonymous (2008), Environmental Outlook to 2030, OECD Publishing, Paris, France.Google Scholar
  4. Anonymous (2009), “Charting Our Water Future: Economic Frameworks to Inform Decision-Making,” see http://www.2030wrg.org/wp-content/uploads/2014/07/Charting-Our-Water-Future-Final.pdf.
  5. Anonymous (2015a), Water Uses, Food and Agricultural Organization of the United Nations, see http://www.fao.org/nr/water/aquastat/water_use.
  6. Anonymous (2015b), Progress on Sanitation and Drinking Water, World Health Organization and UNICEF, WHO Press, Geneva, Switzerland.Google Scholar
  7. Bai, H., Tian, X., Zheng, Y., Ju, J., Zhao, Y., and Jiang, L. (2010), “Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks,” Adv. Mater. 22, 5521–5525.CrossRefGoogle Scholar
  8. Bai, H., Wang, L., Ju, J., Sun, R., Zheng, Y., and Jiang, L. (2014), “Efficient Water Collection on Integrative Bioinspired Surfaces with Star-Shaped Wettability Patterns,” Adv. Mater. 26, 5025–5030.CrossRefGoogle Scholar
  9. Bentley, P. J. and Blumer, W. F. C. (1962), “Uptake of Water by the Lizard, Moloch horridus,” Nature 194, 699–700.CrossRefGoogle Scholar
  10. Beresford-Jones, D., Pullen, A. G., Whaley, O. Q., Moat, J., Chauca, G., Cadwallader, L., Arce, S., Orellana, A., Alarcón, C., Gorriti, M., Maita, P. K., Sturt, F., Dupeyron, A., Huaman, O., Lane, K. J., and French, C. (2015), “Re-evaluating the Resource Potential of Lomas Fog Oasis Environments for Preceramic Hunter–gatherers under Past ENSO Modes on the South Coast of Peru,” Quat. Sci. Rev. 129, 196–215.CrossRefGoogle Scholar
  11. Bhushan, B. (2013), Introduction to Tribology, 2nd ed., Wiley, New York.CrossRefGoogle Scholar
  12. Bhushan, B. and Martin, S. (2018), “Substrate-Independent Superliquiphobic Coatings for Water, Oil, and Surfactant Repellency: An Overview,” J. Colloid Interface Sci. 526, 90–105.CrossRefGoogle Scholar
  13. Brown, P. S. and Bhushan, B. (2015a), “Mechanically Durable, Superoleophobic Coatings Prepared by Layer-by-Layer Technique for Anti-smudge and Oil-Water Separation,” Sci. Rep. Nat. 5, 8701.Google Scholar
  14. Brown, P. S. and Bhushan, B. (2015b), “Bioinspired, Roughness-Induced, Water and Oil Super-philic and Super-phobic Coatings Prepared by Adaptable Layer-by-Layer Technique,” Sci. Rep. Nat. 5, 14030.Google Scholar
  15. Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135.CrossRefGoogle Scholar
  16. Cavallo, F. and Lagally, M. G. (2010), “Semiconductors Turn Soft: Inorganic Nanomembranes,” Soft Matter 6, 439–455.CrossRefGoogle Scholar
  17. Cazacu, A., Tong, C., van der Lee, A., Fyles, T. M., and Barboiu, M. (2006), “Columnar Self-assembled Ureido Crown Ethers: An Example of Ion-Channel Organization in Lipid Bilayers,” J. Am. Chem. Soc. 128, 9541–9548.CrossRefGoogle Scholar
  18. Chen, Y., Wang, L., Xue, Y., Jiang, L., and Zheng, Y. (2013), “Bioinspired Tilt-Angle Fabricated Structure Gradient Fibers: Micro-drops Fast Transport in a Long-Distance,” Sci. Rep. 3, 2927, pp. 1–8.Google Scholar
  19. Comanns, P., Effertz, C., Hischen, F., Staudt, K., Böhme, W., and Baumgartner, W. (2011), “Moisture Harvesting and Water Transport Through Specialized Micro-structures on the Integument of Lizards,” Beilstein J. Nanotechnol. 2, 204–214.CrossRefGoogle Scholar
  20. Comanns, P., Buchberger, G., Buchbaum, A., Baumgartner, R., Kogler, A., Bauer, S., and Baumgartner, W. (2015), “Directional, Passive Liquid Transport: the Texas Horned Lizard as a Model for a Biomimetic ‘Liquid Diode’,” J. R. Soc. Interface 12, 20150415, pp. 1–8.CrossRefGoogle Scholar
  21. Corry, B. (2008), “Designing Carbon Nanotube Membranes for Efficient Water Desalination,” J. Phys. Chem. B 112, 1427–1434.CrossRefGoogle Scholar
  22. Crini, G. (2005), “Recent Developments in Polysaccharide-based Materials used as Adsorbents in Wastewater Treatment,” Prog. Polym. Sci. 30, 38–70.CrossRefGoogle Scholar
  23. Davis, M. E. (2002), “Ordered Porous Materials for Emerging Applications,” Nature 417, 813–820.CrossRefGoogle Scholar
  24. Davis, S. A., Burkett, S. L., Mendelson, N. H., and Mann, S. (1997), “Bacterial Templating of Ordered Macrostructures in Silica and Silica-Surfactant Mesophases,” Nature 385, 420–423.CrossRefGoogle Scholar
  25. Dong, H., Wang, N., Wang, L., Bai, H., Wu, J., Zheng, Y., Zhao, Y., and Jiang, L. (2012), “Bioinspired Electrospun Knotted Microfibers for Fog Harvesting,” ChemPhysChem 13, 1153–1156.CrossRefGoogle Scholar
  26. Ebner, M., Miranda, T., and Roth-Nebelsick, A. (2011), “Efficient Fog Harvesting by Stipagrostis sabulicola (Namib Dune Bushman Grass),” J. Arid Environ. 75, 524–531.CrossRefGoogle Scholar
  27. Edmonds, D. T. and Vollrath, F. (1992), “The Contribution of Atmospheric Water Vapour to the Formation and Efficiency of a Spider’s Capture Web,” Proc. R. Soc. Lond. B 248, 145–148.CrossRefGoogle Scholar
  28. Elimelech, M. and Phillip, W. A. (2011), “The Future of Seawater Desalination: Energy, Technology, and the Environment,” Science 333, 712–717.CrossRefGoogle Scholar
  29. EPA (1995), The Great Lakes: An Environmental Atlas and Resource Book, 3rd ed., EPA, Chicago, IL.Google Scholar
  30. Esmanski, A. and Ozin, G. A. (2009), “Silicon Inverse-Opal-based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries,” Adv. Funct. Mater. 19, 1999–2010.CrossRefGoogle Scholar
  31. Fornasiero, F., Park, H. G., Holt, J. K., Stadermann, M., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2008), “Ion Exclusion by Sub-2-nm Carbon Nanotube Pores,” Proc. Natl. Acad. Sci. 105, 17250–17255.CrossRefGoogle Scholar
  32. Garrod, R. P., Harris, L. G., Schofield, W. C. E., McGettrick, J., Ward, L. J., Teare, D. O. H., and Badyal, J. P. S. (2007), “Mimicking a Stenocara Beetle’s Back for Microcondensation Using Plasmachemical Patterned Superhydrophobic-Superhydrophilic Surfaces,” Langmuir 23, 689–693.CrossRefGoogle Scholar
  33. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993), “Self-assembling Organic Nanotubes Based on a Cyclic Peptide Architecture,” Nature 366, 324–327.CrossRefGoogle Scholar
  34. Habel, J., Hansen, M., Kynde, S., Larsen, N., Midtgaard, S. R., Jensen, G. V., Bomholt, J., Ogbonna, A., Almdal, K., Schulz, A., and Hélix-Nielsen, C. (2015), “Aquaporin-based Biomimetic Polymeric Membranes: Approaches and Challenges,” Membranes 5, 307–351.CrossRefGoogle Scholar
  35. Hamilton, W. J. and Seely, M. K. (1976), “Fog Basking by the Namib Desert Beetle, Onymacris unguicularis,” Nature 262, 284–285.CrossRefGoogle Scholar
  36. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P., Noy, A., and Bakajin, O. (2006), “Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes,” Science 312, 1034–1037.CrossRefGoogle Scholar
  37. Hourani, R., Zhang, C., van der Weegen, R., Ruiz, L., Li, C., Keten, S., Helms, B. A., and Xu, T. (2011), “Processable Cyclic Peptide Nanotubes with Tunable Interiors,” J. Am. Chem. Soc. 133, 15296–15299.CrossRefGoogle Scholar
  38. Hummer, G., Rasaiah, J. C., and Noworyta, J. P. (2001), “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414, 188–190.CrossRefGoogle Scholar
  39. Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., and Jiang, L. (2012), “A Multi-structural and Multi-functional Integrated Fog Collection System in Cactus,” Nat. Commun. 3, Art. 247.Google Scholar
  40. Ju, J., Xiao, K., Yao, X., Bai, H., and Jiang, L. (2013), “Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection,” Adv. Mater. 25, 5937–5942.CrossRefGoogle Scholar
  41. Ju, J., Yao, X., Yang, S., Wang, L., Sun, R., He, Y., and Jiang, L. (2014), “Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection,” Adv. Funct. Mater. 24, 6933–6938.CrossRefGoogle Scholar
  42. Lee, K. P., Arnot, T. C., and Mattia, D. (2011), “A Review of Reverse Osmosis Membrane Materials for Desalination—Development to Date and Future Potential,” J. Membr. Sci. 370, 1–22.CrossRefGoogle Scholar
  43. Liu, G. and Ding, J. (1998), “Diblock Thin Films with Densely Hexagonally Packed Nanochannels,” Adv. Mater. 10, 69–71.CrossRefGoogle Scholar
  44. Liu, C., Xue, Y., Chen, Y., and Zheng, Y. (2015), “Effective Directional Self-gathering of Drops on Spine of Cactus with Splayed Capillary Arrays,” Sci. Rep. 5, 17757, pp. 1–8.Google Scholar
  45. Lorenceau, É. and Quéré, D. (2004), “Drops on a Conical Wire,” J. Fluid Mech. 510, 29–45.CrossRefGoogle Scholar
  46. Louw, G. N. and Seely, M. K. (1980), “Exploitation of Fog Water by a Perennial Namib Dune Grass, Stipagrotis sabulicola,” S. Afr. J. Sci. 76, 38–39.Google Scholar
  47. Ma, W., Samal, S. K., Liu, Z., Xiong, R., De Smedt, S. C., Bhushan, B., Zhang, Q., and Huang, C. (2017), “Dual pH- and Ammonia-Vapor-Responsive Electrospun Nanofibrous Membranes for Oil-Water Separations,” J. Membr. Sci. 537, 128–139.CrossRefGoogle Scholar
  48. Mondal, B., Eain, M. M. G., Xu, Q, Egan, V. M., Punch, J., and Lyons, A. M. (2015), “Design and Fabrication of a Hybrid Superhydrophobic–Hydrophilic Surface That Exhibits Stable Dropwise Condensation,” ACS Appl. Mater. Interfaces 7, 23575–23588.CrossRefGoogle Scholar
  49. Mooney, H. A., Weisser, P. J., and Gulmon, S. L. (1977), “Environmental Adaptations of the Atacama Desert Cactus Copiapoa haseltoniana,” Flora 166, 117–124.CrossRefGoogle Scholar
  50. Negin, S., Daschbach, M. M., Kulikov, O. V., Rath, N., and Gokel, G. W. (2011), “Pore Formation in Phospholipid Bilayers by Branched-Chain Pyrogallol[4]arenes,” J. Am. Chem. Soc. 133, 3234–3237.CrossRefGoogle Scholar
  51. Ogasawara, W., Shenton, W., Davis, S. A., and Mann, S. (2000), “Template Mineralization of Ordered Macroporous Chitin–Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chem. Mater. 12, 2835–2837.CrossRefGoogle Scholar
  52. Ogburn, R. M. and Edwards, E. J. (2009), “Anatomical Variation in Cactaceae and Relatives: Trait Lability and Evolutionary Innovation,” Am. J. Bot. 96, 391–408.CrossRefGoogle Scholar
  53. Park, K.-C., Chhatre, S. S., Srinivasan, S., Cohen, R. E., and McKinley, G. H. (2013), “Optimal Design of Permeable Fiber Network Structures for Fog Harvesting,” Langmuir 29, 13269–13277.CrossRefGoogle Scholar
  54. Parker, A. R. and Lawrence, C. R. (2001), “Water Capture by a Desert Beetle,” Nature 414, 33–34.CrossRefGoogle Scholar
  55. Peinemann, K.-V., Abetz, V., and Simon, P. F. W. (2007), “Asymmetric Superstructure Formed in a Block Copolymer via Phase Separation,” Nat. Mater. 6, 992–996.CrossRefGoogle Scholar
  56. Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Nummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonov, S. N., and Vinogradov, S. A. (2004), “Self-assembly of Amphiphilic Dendritic Dipeptides into Helical Pores,” Nature 430, 764–768.CrossRefGoogle Scholar
  57. Percec, V., Dulcey, A. E., Peterca, M., Adelman, P., Samant, R., Balagurusamy, V. S. K., and Heiney, P. A. (2007), “Helical Pores Self-assembled from Homochiral Dendritic Dipeptides Based on l-Tyr and Nonpolar α-Amino Acids,” J. Am. Chem. Soc. 129, 5992–6002.CrossRefGoogle Scholar
  58. Phillip, W. A., Hillmyer, M. A., and Cussler, E. L. (2010), “Cylinder Orientation Mechanism in Block Copolymer Thin Films Upon Solvent Evaporation,” Macromolecules 43, 7763–7770.CrossRefGoogle Scholar
  59. Pollard, S. J. T., Fowler, G. D., Sollars, C. J., and Perry, R. (1992), “Low-Cost Adsorbents for Waste and Waste-Water Treatment—A Review,” Sci. Total Environ. 116, 31–52.Google Scholar
  60. Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., Stegmaier, T., Sarsour, J., Linke, M., and Konrad, W. (2012), “Leaf Surface Structures Enable the Endemic Namib Desert Grass Stipagrostis sabulicola to Irrigate Itself with Fog Water,” J. R. Soc. Interface 9, 1965–1974.CrossRefGoogle Scholar
  61. Schwenk, K. and Greene, H. W. (1987), “Water Collection and Drinking in Phrynocephalus helioscopus: A Possible Condensation Mechanism,” J. Herpetol. 21, 134–139.CrossRefGoogle Scholar
  62. Sengur-Tasdemir, R., Aydin, S., Turken, T., Genceli, E. A., and Koyuncu, I. (2016), “Biomimetic Approaches for Membrane Technologies,” Sep. Purif. Rev. 45, 122–140.CrossRefGoogle Scholar
  63. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Mariñas, B. J., and Mayes, A. M. (2008), “Science and Technology for Water Purification in the Coming Decades,” Nature 452, 301–310.CrossRefGoogle Scholar
  64. Shanyengana, E. S., Henschel, J. R., Seely, M. K., and Sanderson, R. D. (2002), “Exploring Fog as a Supplementary Water Source in Namibia,” Atmos. Res. 64, 251–259.CrossRefGoogle Scholar
  65. Shiklomanov, I. A. (1993), “World Fresh Water Resources,” in Water in Crisis: A Guide to the World’s Fresh Water Resources (ed. P. H. Gleick), p. 13, Oxford University Press, New York.Google Scholar
  66. Shin, Y., Liu, J., Chang, J. H., Nie, Z., and Exarhos, G. J. (2001), “Hierarchically Ordered Ceramics Through Surfactant-Templated Sol-Gel Mineralization of Biological Cellular Structures,” Adv. Mater. 13, 728–732.CrossRefGoogle Scholar
  67. Shin, Y., Wang, L.-Q., Chang, J. H., Samuels, W. D., and Exarhos, G. J. (2003), “Morphology Control of Hierarchically Ordered Ceramic Materials Prepared by Surfactant-Directed Sol-Gel Mineralization of Wood Cellular Structures,” Stud. Surf. Sci. Catal. 146, 447–451.Google Scholar
  68. Srivastava, A., Srivastava, O. N., Talapatra, S., Vajtai, R., and Ajayan, P. M. (2004), “Carbon Nanotube Filters,” Nat. Mater. 3, 610–614.CrossRefGoogle Scholar
  69. Surwade, S. P., Smirnov, S. N., Vlassiouk, I. V., Unocic, R. R., Veith, G. M., Dai, S., and Mahurin, S. M. (2015), “Water Desalination using Nanoporous Single-Layer Graphene,” Nat. Nanotechnol. 10, 459–464.CrossRefGoogle Scholar
  70. Taguchi, A. and Schüth, F. (2005), “Ordered Mesoporous Materials in Catalysis,” Micropor. Mesopor. Mater. 77, 1–45.CrossRefGoogle Scholar
  71. Verkman, A. S., Anderson, M. O., and Papadopoulos, M. C. (2014), “Aquaporins: Important but Elusive Drug Targets,” Nat. Rev. Drug Discov. 13, 259–277.CrossRefGoogle Scholar
  72. Vesilind, P. J. (2003), “Atacama Desert,” National Geographic (August, 2003) see http://ngm.nationalgeographic.com/features/world/south-america/chile/atacama-text.
  73. Wang, S. and Peng, Y. (2010), “Natural Zeolites as Effective Adsorbents in Water and Wastewater Treatment,” Chem. Eng. J. 156, 11–24.CrossRefGoogle Scholar
  74. Wang, Y., Zhang, L., Wu, J., Hedhili, M. N., and Wang, P. (2015), “A Facile Strategy for the Fabrication of a Bioinspired Hydrophilic–superhydrophobic Patterned Surface for Highly Efficient Fog-Harvesting,” J. Mater. Chem. A 3, 18963–18969.CrossRefGoogle Scholar
  75. Wong, I., Teo, G. H., Neto, C., and Thickett, S. C. (2015), “Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting,” ACS Appl. Mater. Interfaces 7, 21562–21570.CrossRefGoogle Scholar
  76. Xue, Y., Wang, T., Shi, W., Sun, L., and Zheng, Y. (2014), “Water Collection Abilities of Green Bristlegrass Bristle,” RSC Adv. 4, 40837–40840.CrossRefGoogle Scholar
  77. Yang, D., Qi, L., and Ma, J. (2002), “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater. 14, 1543–1546.CrossRefGoogle Scholar
  78. Zhang, B., Davis, S. A., and Mann, S. (2002), “Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films,” Chem. Mater. 14, 1369–1375.CrossRefGoogle Scholar
  79. Zhao, Y., Qiu, C., Li, X., Vararattanavech, A. Shen, W. Torres, J., Hélix-Nielsen, C., Wang, R., Hu, X., Fane, A. G., and Tang, C. Y. (2012), “Synthesis of Robust and High-Performance Aquaporin-based Biomimetic Membranes by Interfacial Polymerization-Membrane Preparation and RO Performance Characterization,” J. Membr. Sci. 423–424, 422–428.CrossRefGoogle Scholar
  80. Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F.-Q., Zhao, Y., Zhai, J., and Jiang, L. (2010), “Directional Water Collection on Wetted Spider Silk,” Nature 463, 640–643.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations