Advertisement

Biomimetics pp 621-664 | Cite as

Bio- and Inorganic Fouling

  • Bharat BhushanEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)

Abstract

Fouling is generally undesirable for most applications (Bhushan 2016, 2017). Fouling includes biological fouling (commonly referred to as biofouling) and inorganic fouling. Biofouling is the accumulation of unwanted biological matter on surfaces, with biofilms created by microorganisms, and macroscale biofouling (simply called macrofouling) created by macroorganisms.

References

  1. Anonymous (1952), Marine Fouling and its Prevention, Woods Hole Oceanographic Institute, US Naval Institute, Annapolis, Maryland.Google Scholar
  2. Anonymous (1999), Why Is Titanium the Metal of Choice for Medical Applications from Head to Toe? International Titanium Association, Boulder, Colorado.Google Scholar
  3. Baker, C., Pradhan, A., Pakstis, L., Pochan, D. J., and Shah, S. I. (2005), “Synthesis and Antibacterial Properties of Silver Nanoparticles,” J. Nanosci. Nanotechnol. 5, 244–249.CrossRefGoogle Scholar
  4. Banerjee, I., Pangule, R. C., and Kane R. S. (2011), “Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms,” Adv. Mater. 23, 690–718.CrossRefGoogle Scholar
  5. Barthlott, W. and Neinhuis, C. (1997), “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces,” Planta 202, 1–8.CrossRefGoogle Scholar
  6. Barthlott, W., Mail, M., Bhushan, B., and Koch, K. (2017), “Plant Surfaces: Structures and Functions for Biomimetic Innovations,” Nano-Micro Lett. 9, 23.Google Scholar
  7. Bhushan, B. (2009), “Biomimetics: Lessons from Nature—An Overview,” Phil. Trans. R. Soc. A. 367, 1445–1486.CrossRefGoogle Scholar
  8. Bhushan, B. (2016), Encyclopedia of Nanotechnology, second ed., Vol. 1–6, Springer International, Cham, Switzerland.Google Scholar
  9. Bhushan, B. (2017), Springer Handbook of Nanotechnology, fourth ed., Springer International, Cham, Switzerland.Google Scholar
  10. Bhushan, B. and Jung, Y. C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.CrossRefGoogle Scholar
  11. Bhushan, B., Luo, D. Schricker, S. R., Sigmund, W., and Zauscher, S. (2014), Handbook of Nanomaterials Properties, Volumes 1–2, Springer, Heidelberg, Germany.Google Scholar
  12. Bhushan, B., Hansford, D., and Lee, K. K. (2006), “Surface Modification of Silicon and Polydimethylsiloxane Surfaces with Vapor-phase-deposited Ultrathin Fluorosilane Films for Biomedical Nanodevices,” J. Vac. Sci. Technol. A 24, 1197–1202.CrossRefGoogle Scholar
  13. Bhushan, B., Jung, Y. C., and Koch, K. (2009), “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion,” Phil. Trans. R. Soc. A 367, 1631–1672.CrossRefGoogle Scholar
  14. Bixler, G. D. and Bhushan, B. (2012), “Biofouling Lessons from Nature,” Phil. Trans. R. Soc. A 370, 2381–2417.CrossRefGoogle Scholar
  15. Bixler, G. D. and Bhushan, B. (2013a), “Fluid Drag Reduction with Shark-Skin Riblet Inspired Microstructured Surfaces,” Adv. Funct. Mater. 23, 4507–4528.CrossRefGoogle Scholar
  16. Bixler, G. D. and Bhushan, B. (2013b), “Fluid Drag Reduction and Efficient Self-Cleaning with Rice Leaf and Butterfly Wing Bioinspired Surfaces,” Nanoscale 5, 7685–7710.CrossRefGoogle Scholar
  17. Bixler, G. D. and Bhushan, B. (2014), “Rice- and Butterfly-Wing Effect Inspired Self-Cleaning and Low Drag Micro/nanopatterned Surfaces in Water, Oil, and Air Flow,” Nanoscale 6, 76–96.CrossRefGoogle Scholar
  18. Bixler, G. D. and Bhushan, B. (2015), “Rice- and Butterfly-Wing Effect Inspired Low Drag and Antifouling Surfaces: A Review,” Crit. Rev. Solid State Mater. Sci. 40, 1–37.CrossRefGoogle Scholar
  19. Bixler, G. D., Theiss, A., Bhushan, B., and Lee, S. C. (2014), “Anti-fouling Properties of Microstructured Surfaces Bio-inspired by Rice Leaves and Butterfly Wings,” J. Colloid Interface Sci. 419, 114–133.CrossRefGoogle Scholar
  20. Bormashenko, E., Bormashenko, Y., Stein, T., Whyman, G., and Bormashenko, E. (2007), “Why Do Pigeon Feathers Repel Water? Hydrophobicity of Pennae, Cassie-Baxter Wetting Hypothesis, and Cassie-Wenzel Capillary-induced Wetting Transition,” J. Colloid Interface Sci. 311, 212–216.CrossRefGoogle Scholar
  21. Bott, T. R. (1988a), “Crystallization of Organic Materials,” in Fouling Science and Technology (eds. L. F. Melo, T. R. Bott, and C. A. Bernardo), pp. 275–280, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  22. Bott, T. R. (1988b), “Crystallization Fouling—Basic Science and Models,” in Fouling Science and Technology (eds. L. F. Melo, T. R. Bott, and C. A. Bernardo), pp. 251–260, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  23. Brennan, A. B., Baney, R. H., Carman, M. I., Estes, T. G., Feinberg, A. W., Wilson, L. H., and Schumacher, J. F. (2010), “Surface Topographies for Non-Toxic Bioadhesion Control,” United States Patent no. 7 650 848.Google Scholar
  24. Caballero, L., Whitehead, K. A., Allen, N. S., and Verran, J. (2010), “Photoinactivation of Escherichia coli on Acrylic Paint Formulations Using Fluorescent Light,” Dyes Pigm. 86, 56–62.CrossRefGoogle Scholar
  25. Callow, M. E. (1999), “The Status and Future of Biocides in Marine Biofouling Prevention,” in Recent Advances in Marine Biotechnology (eds. M. Fingerman, R. Nagabhushanam, and M. F. Thompson), pp. 109–126, Science Publishers, Enfield, New Hampshire.Google Scholar
  26. Callow, M. E., Pitchers, R. A., and Milne A. (1986), “The Control of Fouling by Non-Biocidal Systems,” in Algal Biofouling (eds. L. V. Evans and K. D. Hoagland), pp. 145–158, Elsevier Science Publishers, Amsterdam.Google Scholar
  27. Callow, M. E., Jennings, A. R., Brennan, A. B., Seegert, C. E., Gibson, A., Wilson, L., Feinberg, A., Baney, R., and Callow, J. A. (2002), “Microtopographic Cues for Settlement of Zoospores of the Green Fouling Alga Enteromorpha,” Biofouling 18, 237–245.CrossRefGoogle Scholar
  28. Cao, L., Jones, A. K., Sikka, V. K., Wu, J., and Gao, D. (2009), “Anti-Icing Superhydrophobic Coatings,” Langmuir 25, 12444–12448.CrossRefGoogle Scholar
  29. Carman, M. L., Estes, T. G., Feinburg, A. W., Schumacher, J. F., Wilkerson, W., Wilson, L. H., Callow, M. E., Callow, J. A., and Brennan, A. B. (2006), “Engineered Antifouling Microtopographies—Correlating Wettability with Cell Attachment,” Biofouling 22, 11–21.CrossRefGoogle Scholar
  30. Chan, J. and Wong, S. (eds.) (2010), Biofouling Types, Impact and Anti-fouling, Nova Science Publishers, New York.Google Scholar
  31. Charles, C. H., Mostler, K. M, Bartels, L. L., and Mankodi, S. M. (2004), “Comparative Antiplaque and Antigingivitis Effectiveness of and Chlorhexidine and an Essential Oil Mouth Rinse: 6-Month Clinical Trial,” J. Clin. Periodontal. 31, 878–884.CrossRefGoogle Scholar
  32. Clare, A. S. and Aldred, N. (2009), “Surface Colonization by Marine Organisms and its Impact on Antifouling Research,” in Advances in Marine Antifouling Coatings and Technologies (eds. C. Hellio and D. Yebra), pp. 46–79, CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
  33. Clarkson, N. (1999), “The Antifouling Potential of Silicone Elastomer Polymers,” in Recent Advances in Marine Biotechnology (eds. M. Fingerman, R. Nagabhushanam, and M. F. Thompson), pp. 87–108, Science Publishers, Enfield, New Hampshire.Google Scholar
  34. Cologer, C. P. (1984), “Six Year Interaction of Underwater Cleaning with Copper Based Antifouling Paints on Navy Surface Ships,” Nav. Eng. J. 96, 200–208.CrossRefGoogle Scholar
  35. Copisarow, M. (1945), “Marine Fouling and its Prevention,” Science 101, 406–407.CrossRefGoogle Scholar
  36. Costerton, J. W. (ed.) (2008), Springer Series on Biofilms, Springer-Verlag, Berlin.Google Scholar
  37. Cui, Z. and Wan, Y. (2005), “Biofouling in Membrane Separation Systems,” in Surfaces and Interfaces for Biomaterials (ed. P. Vadgama), pp. 493–544, CRC Press, Boca Raton, Florida.Google Scholar
  38. Cunningham, A. B., Lennox, J. E., and Ross, R. J. (2008), Biofilms in Industrial Environments. Retrieved June 27, 2011, from http://biofilmbook.hypertextbookshop.com/public_version/contents/contents.html.
  39. Dastjerdi, R, and Montazar, M. (2010), “A Review on the Application of Inorganic Nano-structured Materials in the Modification of Textiles: Focus on Anti-microbial Properties,” Colloids. Surf. B 79, 5–18.CrossRefGoogle Scholar
  40. Davies, D. (2003), “Understanding Biofilm Resistance to Antibacterial Agents,” Nat. Rev. 2, 114–122.CrossRefGoogle Scholar
  41. Dean, B. and Bhushan, B. (2010), “Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review,” Phil. Trans. R. Soc. A. 368, 4775–4806.CrossRefGoogle Scholar
  42. Epstein, N. (1988), “Particulate Fouling of Heat Transfer Surfaces: Mechanisms and Models,” in Fouling Science and Technology (eds. L. F. Melo, T. R. Bott, and C. A. Bernardo), pp. 143–164, Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  43. Feng, X. and Jiang, L. (2006), “Design and Creation of Superwetting/Antiwetting Surfaces,” Adv. Mater. 18, 3063–3078.CrossRefGoogle Scholar
  44. Fingerman, M., Nagabhushanam, R., and Thompson, M. F. (eds.) (1999), Recent Advances in Marine Biotechnology, Science Publishers, Inc., Enfield, New Hampshire.Google Scholar
  45. Finlay, J. A., Callow, M. E., Schultz, M. P., Swain, G. W., and Callow, J. A. (2002), “Adhesion Strength of Settled Spores of the Green Alga Enteromorpha,” Biofouling 18, 251–256.CrossRefGoogle Scholar
  46. Flemming, H. C., Wingender, J., Moritz, R., Borchard, W., and Mayer, C. (1999), “Physio-chemical Properties of Biofilms—A Short Review,” in Biofilms in the Aquatic Environment (eds. C. W. Keevil, A. Godfree, D. Holt, and C. Dow), pp. 1–12, The Royal Society of Chemistry, Cambridge, UK.Google Scholar
  47. Flemming, H. C., Szewzyk, U., and Griebe, T. (eds.) (2000), Biofilms Investigative Methods and Applications, Technomic Publishing Co., Lancaster, Pennsylvania.Google Scholar
  48. Fletcher, J. T., Finlay, J. A., Callow, M. E., Callow, J. A., and Ghadiri, M. R. (2007), “A Combinatorial Approach to the Discovery of Biocid al Six-Residue Cyclic D, L-α-Peptides Against the Bacteria Methicillin-Resistant Staphylococcusaureus (MRSA) and E. coli and the Biofouling Algae Ulva linza and Navicula perminuta,” Chem. Eur. J. 13, 4008–4013.CrossRefGoogle Scholar
  49. Gordon, D. P. and Mawatari, S. F. (1992), Atlas of Marine-fouling Bryozoa of New Zealand Ports and Harbours, New Zealand Oceanographic Institute, Wellington.Google Scholar
  50. Griebe, T. and Flemming, H. C. (2000), “Rotating Annular Reactors for Controlled Growth of Biofilms,” in Biofilms Investigative Methods and Applications (eds. H. C. Flemming, U. Szewzyk, and T. Griebe), pp. 1–22, Technomic Publishing Co, Inc., Lancaster, Pennsylvania.Google Scholar
  51. Harder, T. and Yee, L. H. (2009), “Bacterial Adhesion and Marine Fouling,” in Advances in Marine Antifouling Coatings and Technologies (eds. C. Hellio and D. Yebra), pp. 113–131, CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
  52. Hellio, C. and Yebra, D. (eds.) (2009), Advances in Marine Antifouling Coatings and Technologies, CRC Press, Boca Raton, Florida.Google Scholar
  53. Herzberg, M. and Elimelech, M. (2007), “Biofouling of Reverse Osmosis Membranes: Role of Biofilm-enhanced Osmotic Pressure,” J. Membr. Sci. 295, 11–20.CrossRefGoogle Scholar
  54. Hipler, U. -C. and Elsner, P. (eds.) (2006), Biofunctional Textiles and the Skin, Karger, Basel, Switzerland.Google Scholar
  55. Hoipkemeier-Wilson, L., Schumacher, J. F., Carman, M. L., Gibson, A. L., Feinberg, A. W., Callow, M. E., Finlay, J. A., Callow, J. A., and Brennan, A. B. (2004), “Antifouling Potential of Lubricious, Micro-engineered, PDMS Elastomers against Zoospores of the Green Fouling Alga Ulva (Enteromorpha),” Biofouling 20, 53–63.CrossRefGoogle Scholar
  56. Jones, G. (2009), “The Battle Against Marine Biofouling: A Historical Review,” in Advances in Marine Antifouling Coatings and Technologies (eds. C. Hellio and D. Yebra), pp. 19–45, CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
  57. Keevil, C. W., Godfree, A., Holt, D., and Dow, C. (eds.) (1999), Biofilms in the Aquatic Environment, The Royal Society of Chemistry, Cambridge, UK.Google Scholar
  58. Kesel, A. and Liedert, R. (2007), “Learning from Nature: Non-Toxic Biofouling Control by Shark Skin Effect,” Comp. Biochem. Physiol. A 146, S130.CrossRefGoogle Scholar
  59. Kim, S. H., Kwak, S. Y., Sohn, B. H., and Park, T. H. (2003), “Design of TiO2 Nanoparticle Self-Assembled Aromatic Polyamide Thin-film-composite (TFC) Membrane as an Approach to Solve Biofouling Problem,” J. Membr. Sci. 211, 157–165.CrossRefGoogle Scholar
  60. Koch, K. and Barthlott, W. (2009), “Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials,” Phil. Trans. R. Soc. 367, 1487–1509.CrossRefGoogle Scholar
  61. Koch, K., Bhushan, B., and Barthlott, W. (2008), “Diversity of Structure, Morphology, and Wetting of Plant Surfaces,” Soft Matter 4, 1943–1963.CrossRefGoogle Scholar
  62. Koch, K., Bhushan, B., and Barthlott, W. (2009), “Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics,” Prog. Mater. Sci. 54, 137–178.CrossRefGoogle Scholar
  63. Lee, W., Jin, M. K., Yoo, W. C., and Less, J. K. (2004), “Nanostructuring of a Polymeric Substrate with Well-Defined Nanometer-Scale Topography and Tailored Surface Wettability,” Langmuir 20, 7665–7669.CrossRefGoogle Scholar
  64. Lim, A. L. and Bai, R. (2003), “Membrane Fouling and Cleaning in Microfiltration of Activated Sludge Wastewater,” J. Membr. Sci. 216, 279–290.CrossRefGoogle Scholar
  65. LoVetri, K., Gawande, P. V., Yakandawala, N., and Madhyastha S. (2010), “Biofouling and Anti-fouling of Medical Devices,” in Biofouling Types, Impact and Anti-fouling (eds. J. Chan and S. Wong), pp. 105–128, Nova Science Publishers, New York.Google Scholar
  66. Ma, H., Bowman, C. N., and Davis, R. H. (2000), “Membrane Fouling Reduction by Backpulsing and Surface Modification,” J. Membr. Sci. 173, 191–200.CrossRefGoogle Scholar
  67. Marrie, T. J. and Costerton, J. W. (1984), “Morphology of Bacterial Attachment to Cardiac Pacemaker Leads and Power Packs,” J. Clin. Microbiol. 19, 911–914.Google Scholar
  68. Mather R. R. and Wardman R. H. (eds.) (2011), The Chemistry of Textile Fibers, Royal Society of Chemistry, Cambridge.Google Scholar
  69. Melo, L. F., Bott, T. R., and Bernardo, C. A. (eds.) (1988), Fouling Science and Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  70. Menton, D. (2008), “The Seeing Eye,” AnswersMagazine.com, July–Sept. pp. 76–79.Google Scholar
  71. Meuler, A. J., Smith, J. D., Varanasi, K. K., Mabry, J. M., McKinley, G. H., and Cohen, R. E. (2010), “Relationships Between Water Wettability and Ice Adhesion,” ACS Appl. Mater. Interfaces 2, 3100–3110.CrossRefGoogle Scholar
  72. Monroe, D. (2007), “Looking for Chinks in the Armor of Bacterial Biofilms,” PLoS Biol. 5, 2458–2461.CrossRefGoogle Scholar
  73. Neinhuis, C. and Barthlott, W. (1997), “Characterization and Distribution of Water-Repellent, Self-Cleaning Plant Surfaces,” Ann. Bot. 79, 667–677.CrossRefGoogle Scholar
  74. Palacio, M. L. B. and Bhushan, B. (2012), “Bioadhesion: A Review of Concepts and Applications,” Phil. Trans. R. Soc. A 370, 2321–2347.CrossRefGoogle Scholar
  75. Perera, S., Bhushan, B., Bandara, R., Rajapakse, G., Rajapakse, S., and Bandara, C. (2013), “Morphological, Antimicrobial, Durability, and Physical Properties of Untreated and Treated Textiles Using Silver-Nanoparticles,” Colloid Surf. A 436, 975–989.CrossRefGoogle Scholar
  76. Pollini M., Russo M., Licciulli E. A., Sannino A., and Maffezzoli E. A. (2009), “Characterization of Antibacterial Silver Coated Yarns,” J. Mater. Sci: Mater. Med. 20, 2361–2366.Google Scholar
  77. Pritchard, A. M. (1988), “Deposition of Hardness Salts,” in Fouling Science and Technology (eds. L. F. Melo, T. R. Bott, and C. A. Bernardo), pp. 261–274, Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
  78. Puckett, S. D., Lee, P. P., Ciombor, D. M., Aaron, R. K., and Webster, T. J. (2010), “Nano-textured Titanium Surfaces for Enhancing Skin Growth on Transcutaneous Osseointegrated Devices,” Acta Biomater. 6, 2352–2362.CrossRefGoogle Scholar
  79. Raghupathi, K. R., Koodali, R. T., and Manna, A. C. (2011), “Size-Dependent Bacterial Growth Inhibition and Maechanisms of Antibacterial Activity of Zinc Oxide nanoparticles,” Langmuir 27, 4020–4028.CrossRefGoogle Scholar
  80. Railkin, A. I. (2004), Marine Biofouling Colonization Processes and Defenses, CRC Press, Boca Raton, Florida.Google Scholar
  81. Ralston, E. and Swain, G. (2009), “Bioinspiration—The Solution for Biofouling Control?” Bioinsp. Biomim. 4, 1–9.CrossRefGoogle Scholar
  82. Ray, D. L. (ed.) (1959), Marine Boring and Fouling Organisms, University of Washington Press, Seattle.Google Scholar
  83. Sawai, J., Kawada, E., Kanou, F, Igarashi, H., Hashimoto, A, Kokugan, T., and Shimizu, M. (1996), “Detection of Active Oxygen Generated from Ceramic Powders having Antibacterial Activity,” J. Chem. Eng. Jpn. 29, 627–633.CrossRefGoogle Scholar
  84. Scardino, A. J. (2009), “Surface Modification Approaches to Control Marine Biofouling,” in Advances in Marine Antifouling Coatings and Technologies (eds. C. Hellio and D. Yebra), pp. 664–692, CRC Press, Boca Raton, Florida.CrossRefGoogle Scholar
  85. Scardino, A. J., Guenther, J., and de Nys, R. (2008), “Attachment Point Theory Revisited: The Fouling Response to a Microtextured Matrix,” Biofouling 24, 45–53.CrossRefGoogle Scholar
  86. Schulz, M. J., Shanov, V. N., and Yun, Y. (eds.) (2009), Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices, Artech House, Boston.Google Scholar
  87. Schumacher, J. F., Aldred, N., Callow, M. E., Finlay, J. A., Callow, J. A., Clare, A. S., and Brennan, A. B. (2007a), “Species-Specific Engineered Antifouling Topographies: Correlations between the Settlement of Algal Zoospores and Barnacle Cyprids,” Biofouling 23, 307–317.CrossRefGoogle Scholar
  88. Schumacher, J. F., Carman, M. L., Estes, T. G., Feinberg, A. W., Wilson, L. H., Callow, M. E., Callow, J. A., Finlay, J. A., and Brennan, A. B. (2007b), “Engineered Antifouling Microtopographies—Effect of Feature Size, Geometry, and Roughness on Settlement of Zoospore of the Green Alga Ulva,” Biofouling 23, 55–62.CrossRefGoogle Scholar
  89. Sharma, N., Charles, C. H., Lynch, M. C., Qaqish, J., McGuire, J. A., Galustians, J. G., and Kumar, L. D. (2004), “Adjunctive Benefit of an Essential Oil-Containing Mouth Rinse in Reducing Plaque and Gingivitis in Patients Who Brush and Floss Regularly,” J Am. Dent. Assoc. 135, 496–504.CrossRefGoogle Scholar
  90. Sharma, S., Popat, K. C., and Desai, T. A. (2007), “Design and Biological Applications of Nanostructured Poly(Ethylene Glycol) Films,” in Nanotechnology in Biology and Medicine Methods, Devices, and Applications (ed. T. Vo-Dinh), pp. 39–1, CRC Press, Boca Raton, Florida.Google Scholar
  91. Sheng, X., Ting, Y. P., and Pehkonen, S. O. (2010), “Force Measurements of Bacterial Adhesion to Metals Using Cell Probe in Atomic Force Microscopy,” in Biofouling Types, Impact and Anti-fouling (eds. J. Chan and S. Wong), pp. 129–154, Nova Science Publishers, New York.Google Scholar
  92. Shirtliff, M. and Leid, J. G. (eds.) (2009), The Role of Biofilms in Device-Related Infections, Springer-Verlag, Berlin.Google Scholar
  93. Simoes, M., Simoes, L. C., and Vieira, M. J. (2010), “A Review of Current and Emergent Biofilm Control Strategies,” LWT Food Sci. Technol. 43, 573–583.CrossRefGoogle Scholar
  94. Somerscales, E. F. C. and Knudsen, J. G. (eds.) (1981), Fouling of Heat Transfer Equipment, Hemisphere Publishing Corporation, Washington.Google Scholar
  95. Stoodley, P., Sauer, K., Davies, D. G., and Costerton, J. W. (2002), “Biofilms as Complex Differentiated Communities,” Annu. Rev. Microbiol. 56, 187–209.CrossRefGoogle Scholar
  96. Sunada, K., Kikuchi, Y., Hashimoto, K., and Fujishima, A. (1998), “Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts,” Environ. Sci. Technol. 32, 726–728.CrossRefGoogle Scholar
  97. Taylor, E. and Webster, T. J. (2011), “Reducing Infections through Nanotechnology and Nanoparticles,” Int. J. Nanomed. 6, 1463–1473.Google Scholar
  98. Touati, D. (2000), “Iron and Oxidative Stress in Bacteria,” Arch. Biochem. Biophys. 373, 1–6.CrossRefGoogle Scholar
  99. Trinidad, A., Ibanez, A., Gomez, D., Garcia-Berrocal, J. R., and Ramierz-Camacho, R. (2010), “Application of Environmental Scanning Electron Microscopy for Study of Biofilms in Medical Devices,” Microsc.: Sci. Technol. Appl. Educ. 1, 204–210.Google Scholar
  100. Vadgama, P. (ed.) (2005), Surfaces and Interfaces for Biomaterials, CRC Press, Boca Raton, Florida.Google Scholar
  101. Venkatesan, R. and Murthy, P. S. (2008), “Macrofouling Control in Power Plants,” in Springer Series on Biofilms (ed. J. W. Costerton), pp. 265–290, Springer-Verlag, Berlin.Google Scholar
  102. Vladkova, T. (2007), “Surface Engineering for Non-Toxic Biofouling Control,” J. Univ. Chem. Technol. Metall. 43, 239–256.Google Scholar
  103. Vladkova, T. (2008), “Surface Modification Approach to Control Biofouling,” in Springer Series on Biofilms (ed. J. W. Costerton), pp. 135–162, Springer-Verlag, Berlin.Google Scholar
  104. Vleugels, I. R. (2006), “Multi-Functional Coating Solution,” Euprofile Public Serv. Rev.: Eur. Union 18, 1–2.Google Scholar
  105. Vo-Dinh, T. (ed.) (2007), Nanotechnology in Biology and Medicine, CRC Press, Boca Raton, Florida.Google Scholar
  106. Wagner, T., Neinhuis, C., and Barthlott, W. (1996), “Wettability and Contaminability of Insect Wings as a Function of Their Surface Sculptures,” Acta Zool. 77, 213–225.CrossRefGoogle Scholar
  107. Walker, J., Surman, S., and Jass, J. (eds.) (2000), Industrial Biofouling Detection, Prevention and Control, Wiley, New York.Google Scholar
  108. Wang, Y. and Bhushan, B. (2015), “Wear-Resistant and Antismudge Superoleophobic Coating on Polyethylene Terephthalate Substrate Using SiO2 Nanoparticles,” ACS Appl. Mater. Interfaces 7, 743–755.CrossRefGoogle Scholar
  109. Willemsen, P. (2005), “Biofouling in European Aquaculture: Is There an Easy Solution?” Eur. Aquac. Soc. Spec. Publ. 35, 101–118.Google Scholar
  110. Windler L., Height M., and Nowack B. (2013), “Comparative Evaluation of Antimicrobials for Textile Applications,” Environ. Int. 53, 62–73.CrossRefGoogle Scholar
  111. Yen, J. (2010), “Marine Dynamics,” in Bulletproof Feathers How Science Uses Nature’s Secrets to Design Cutting-Edge Technology (ed. R. Allen), pp. 22–43, University of Chicago Press, Chicago.Google Scholar
  112. Zodrow, K., Brunet, L., Mahendra, S., Li, D., and Zhang, A. (2009), “Polysulfone Ultrafiltration Membranes Impregnated with Silver Nanoparticles Show Improved Biofouling Resistance and Virus Removal,” Water Res. 43, 715–723.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations