Skip to main content

Shark Skin Surface for Fluid-Drag Reduction in Turbulent Flow

  • Chapter
  • First Online:
Biomimetics

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 279))

Abstract

Nature has created ways of reducing drag in fluid flow , evident in the efficient movement of fish, dolphins, and sharks. The mucus secreted by fish reduces drag as they move through water, protects the fish from abrasion by making the fish slide across objects rather than scrape, and prevents disease by making the surface of the fish difficult for microscopic organisms to adhere to, minimizing biofouling (Shephard in Rev Fish Biol Fish 4:401–429, 1994). Applications of drag reducing polymers has been long known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J.D. (2010), Fundamentals of Aerodynamics, fifth ed., McGraw Hill, New York.

    Google Scholar 

  • Anonymous (1952), Marine Fouling and its Prevention, Woods Hole Oceanographic Institute, US Naval Institute, Annapolis, US.

    Google Scholar 

  • Anonymous (2007), Pilot’s Encyclopedia of Aeronautical Knowledge, United States Federal Aviation Administration, Skyhorse, New York.

    Google Scholar 

  • Anonymous (2012), International Maritime Organization, Maritime Knowledge Centre, International Shipping Facts and Figures – Information Resources on Trade, Safety, Security, and Environment Retrieved from <http://www.imo.org/en/KnowledgeCentre/ShipsAndShippingFactsAndFigures/TheRoleandImportanceofIntenationalShipping/Pages/TheRoleandImportanceOfIntenationalShipping.aspx/> 2012

  • Anonymous (2016a) ANSYS® Fluent, Release 16.0, Help System, Fluent User’s Guide, ANSYS, Inc.

    Google Scholar 

  • Anonymous (2016b) U.S. Department of Transportation, Office of the Assistant Secretary for Research and Technology, Bureau of Transportation Statistics, October 2015 U. S. Airline Traffic Data, Press Release: BTS04-16 Retrieved from <http://www.rita.dot.gov/bts/press_release/bts004_16/> 2016

  • Anonymous (2016c) U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, Office of Pipeline Safety. Annual Report Summary Retrieved from http://www.phmsa.dot.gov/pipeline/library/data-stats/pipelinemileagefacilities/> 2016.

  • Barlow, J. B., Rae, W. H., and Pope, A. (1999), Low-Speed Wind Tunnel Testing, third ed., Wiley-Interscience, New York.

    Google Scholar 

  • Batchelor, G. K. (1970), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, U. K.

    Google Scholar 

  • Bechert, D. W., Hoppe, G. and Reif, W. E. (1985), “On the Drag Reduction of the Shark Skin,” Paper # AIAA-85-0546, presented at AIAA Shear Flow Control Conference, Boulder, CO, AIAA, New York.

    Google Scholar 

  • Bechert, D. W., Bartenwerfer, M., Hoppe, G., and Reif, W.-E. (1986), “Drag Reduction Mechanisms Derived from Shark Skin,” Paper # ICAS-86-1.8.3, Vol. 2 (A86-48-97624-01), pp. 1044-1068, Proc. 15th ICAS Congress, AIAA, New York.

    Google Scholar 

  • Bechert, D. W., Hoppe, G., van der Hoeven, J. G. T. and Makris, R. (1992), “The Berlin Oil Channel for Drag Reduction Research,” Exp. in Fluids 12, 251–260.

    Article  Google Scholar 

  • Bechert, D. W., Bruse, M., Hage, W., and Meyer, R. (1997a), “Biological Surfaces and Their Technological Application – Laboratory and Flight Experiments on Drag Reduction and Separation Control,” Paper # AIAA-1997-1960, presented at AIAA 28th Fluid Dynamics Conference, Snowmass Village, CO, AIAA, New York.

    Google Scholar 

  • Bechert, D. W., Bruse, M., Hage, W., van der Hoeven, J. G. T. and Hoppe, G. (1997b), “Experiments on Drag Reducing Surfaces and their Optimization with an Adjustable Geometry,” J. Fluid Mech. 338, 59–87.

    Article  Google Scholar 

  • Bechert, D. W., Bruse, M. and Hage, W. (2000a), “Experiments with Three-dimensional Riblets as an Idealized Model of Shark Skin,” Exp. Fluids 28, 403–412.

    Article  Google Scholar 

  • Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. (2000b), “Fluid Mechanics of Biological Surfaces and their Technological Application,” Naturwissenschaften 87, 157–171.

    Article  CAS  Google Scholar 

  • Bhushan, B. (2009), “Biomimetics: Lessons from Nature – an Overview,” Phil. Trans. R. Soc. 367, 1445–1486.

    Google Scholar 

  • Bhushan, B. (2012), “Bioinspired Structured Surfaces,” Langmuir 28, 1698–1714.

    Article  CAS  Google Scholar 

  • Bhushan, B. and Caspers, M. (2017) “An Overview of Additive Manufacturing (3D Printing) for Microfabrication,” Microsyst. Technol. 23, 1117–1124.

    Article  Google Scholar 

  • Bhushan, B. and Jung, Y.C. (2011), “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction,” Prog. Mater. Sci. 56, 1–108.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2012a), “Biofouling Lessons from Nature,” Phil. Trans. R. Soc. A, 370, 2381–2417.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2012b), “‘Bioinspired Rice Leaf and Butterfly Wing Surface Structures Combining Shark Skin and Lotus Effects,” Soft Matter 8, 11271–11284.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2013a), “Fluid Drag Reduction with Shark-skin Riblet Inspired Microstructured Surfaces,” Adv. Func. Mater. 23, 4507–4528.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2013b), “Shark Skin Inspired Low-drag Microstructured Surfaces in Closed Channel Flow,” J. Colloid Interf. Sci. 393, 384–396.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2013c), “Bioinspired Micro/Nanostructured Surfaces for Oil Drag Reduction in Closed Channel Flow,” Soft Matter 9, 1620–1635.

    Article  CAS  Google Scholar 

  • Bixler, G. D. and Bhushan, B. (2013d), “Fluid Drag Reduction and Efficient Self-Cleaning with Rice Leaf and Butterfly Wing Bioinspired Surfaces,” Nanoscale 5, 7685–7710.

    Article  CAS  Google Scholar 

  • Blevins, R. D. (1984), Applied Fluid Dynamics Handbook, Van Nostrand-Reinhold, New York.

    Google Scholar 

  • Brennan, A. B., Baney, R. H., Carman, M. I., Estes, T. G., Feinberg, A. W., Wilson, L. H. and Schumacher, J. F.. (2010), “Surface Topographies for Non-Toxic Bioadhesion Control,” U. S. Patent no. 7,650,848 B2, Jan. 26.

    Google Scholar 

  • Brostow, W. (2008), “Drag Reduction in Flow: Review of Applications, Mechanism, and Prediction,” J. Indust and Eng Chem 14, 408–416.

    Article  CAS  Google Scholar 

  • Burger, E. D., Munk, W. R. and Wahl, H. A. (1982), “Flow Increase in the Trans Alaska Pipeline Through Use of a Polymeric Drag-Reducing Additive,” J. Petro Tech, 34, 377–386.

    Article  CAS  Google Scholar 

  • Buttner, C. C. and Schulz, U. (2011), “Shark Skin Inspired Riblet Structures as Aerodynamically Optimized High Temperature Coatings for Blades of Aeroengines,” Smart Matl. and Struct. 20, 1–9.

    Google Scholar 

  • Caram, J. M. and Ahmed, A. (1991), “Effect of Riblets on Turbulence in the Wake of an Airfoil,” AIAA 29, 1769–1770.

    Google Scholar 

  • Caram, J. M. and Ahmed, A. (1992), “Development of the Wake of an Airfoil with Riblets,” AIAA 30, 2817–2818.

    Article  Google Scholar 

  • Chan, J. and Wong, S. (eds.) (2010), Biofouling Types, Impact and Anti-Fouling, Nova Science Publishers, New York.

    Google Scholar 

  • Choi, K. S., Gadd, G. E., Pearcey, H. H., Savill, A. M., and Svensson, S. (1989), “Tests of Drag-Reducing Polymer Coated on a Riblet Surface,” Appl. Sci. Res. 46, 209–216.

    Article  Google Scholar 

  • Choi, H., Moin, P. and Kim, J. (1993), “Direct Numerical Simulation of Turbulent Flow Over Riblets,” J. Fluid Mech. 255, 503–539.

    Article  CAS  Google Scholar 

  • Choi, K. S., Yang, X., Clayton, B. R., Glover, E. J., Altar, M., Semenov, B. N., and Kulik, V. M. (1997), “Turbulent Drag Reduction Using Compliant Surfaces,” Proc. R. Soc A 453, 2229–2240.

    Article  Google Scholar 

  • Chu, D. C. and Karniadakis, G. E. (1993), “A Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblet-mounted Surfaces,” J. Fluid Mech. 250, 1–42.

    Article  CAS  Google Scholar 

  • Collins, M. W. and Brebbia, C. A. (eds.) (2004), Design and Nature II Comparing Design in Nature with Science and Engineering, WIT Press, Southampton, UK.

    Google Scholar 

  • Copisarow, M. (1945), “Marine Fouling and its Prevention,” Science 101, 406–407.

    Article  CAS  Google Scholar 

  • Coustols, E. (1989), “Behavior of Internal Manipulators: “Riblet” Models in Subsonic and Transonic Flows,” Paper # AIAA-89-0963, presented at AIAA Shear Flow Conference, Tempe, AZ, AIAA, New York.

    Google Scholar 

  • Coustols, E. and Cousteix, J. (1994), “Performances of Riblets in the Supersonic Regime,” AIAA 32, 431–433.

    Article  Google Scholar 

  • Coustols, E. and Schmitt, V. (1990), “Synthesis of Experimental Riblet Studies in Transonic Conditions,” in Turbulence Control by Passive Means (ed. E. Coustols), pp. 123–140, Kluwer, Dordrecht, The Netherlands.

    Chapter  Google Scholar 

  • Daniello, R. J., Waterhouse, N. E. and Rothstein, J. P. (2009), “Drag Reduction in Turbulent Flows over Superhydrophobic Surfaces,” Phys. Fluids 21, 085103.

    Article  Google Scholar 

  • Davies, M. (ed.) (2002), Standard Handbook for Aeronautical and Astronautical Engineers, McGraw-Hill, New York.

    Google Scholar 

  • Dean, B. and Bhushan, B. (2010), “Shark-skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: a Review,” Phil. Trans. R. Soc. 368, 4775–4806.

    Article  Google Scholar 

  • Dean, B. and Bhushan, B. (2012), “The Effect of Riblets in Rectangular Duct Flow,” Appl. Surf. Sci. 258, 3936–3947.

    Article  CAS  Google Scholar 

  • Denkena, B., Kohler, J. and Wang, B. (2010), “Manufacturing of Functional Riblet Structures by Profile Grinding,” CIRP J. Manuf. Sci. Tech. 3, 14–26.

    Article  Google Scholar 

  • Deyuan, Z., Yuehao, L., Huawei, C. and Xinggang, J. (2011), “Exploring Drag-Reducing Grooved Internal Coating for Gas Pipelines,” Pipeline & Gas Journal 238, 59–60.

    Google Scholar 

  • Dickinson, P. H. and Proudley, G. M. (1991), “Methods of Manufacture and Surface Treatment Using Laser Radiation,” U. S. Patent no. 4,994,639, Feb. 19.

    Google Scholar 

  • El-Samni, O. A., Chun, H. H. and Yoon, H. S. (2007), “Drag Reduction of Turbulent Flow Over Thin Rectangular Riblets,” Int. J. Eng. Sci. 45, 436–454.

    Article  CAS  Google Scholar 

  • Enyutin, G. V., Lashkov, Y. A., and Samoilova, N. V. (1995), “Drag Reduction in Riblet-Lined Pipes,” Fluid Dynamics, 30, 45–48.

    Article  Google Scholar 

  • Frings, B. (1988), “Heterogeneous Drag Reduction in Turbulent Pipe Flows using Various Injection Techniques,” Rheologica Acta 27, 92–110.

    Google Scholar 

  • Gillcrist, M. C. and Reidy, L. W. (1989), “Drag Measurements on Marine Vehicles with a Riblet Surface Coating,” in Drag Reduction in Fluid Flows: Techniques for Friction Control (eds. R. H. J. Sellin and R.T. Moses), pp. 99–106, Ellis Horwood Publishers, Chichester, England.

    Google Scholar 

  • Goldstein, D., Handler, R. and Sirovich, L. (1995), “Direct Numerical Simulation of Turbulent Flow Over a Modelled Riblet-covered Surface,” J. Fluid Mech. 302, 333–376.

    Article  Google Scholar 

  • Gruneberger, R. and Hage, W. (2011), “Drag Characteristics of Longitudinal and Transverse Riblets at Low Dimensionless Spacings,” Exp. Fluids, 50, 363–373.

    Article  Google Scholar 

  • Han, M., Huh, J. K., Lee, S. S., and Lee, S. (2002), “Micro-Riblet Film for Drag Reduction,” Proceedings of the Pacific Rim Workshop on Transducers and Micro/Nano Technologies, Xiamen, China.

    Google Scholar 

  • Han, M., Lim, H. C., Jang, Y.-G., Seung, S. L., and Lee, S.-J. (2003), “Fabrication of a Micro-Riblet Film and Drag Reduction Effects on Curved Objects,” Paper # 0–7803-7731-1, presented at 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, MA.

    Google Scholar 

  • Hirt, G. and Thome, M. (2007), “Large Area Rolling of Functional Metallic Micro Structures,” Prod. Eng. Res. Devel. 1, 351–356.

    Article  Google Scholar 

  • Hoyt, J. W. (1975), “Hydrodynamic Drag Reduction Due to Fish Slimes,” in Swimming and Flying in Nature (ed. T. Y. T. Wu), Vol. 2, pp. 653–672.

    Google Scholar 

  • Jimenez, J. and Moin, P. (1991), “The Minimal Flow Unit in Near-wall Turbulence,” J. Fluid Mech. 225, 213–240.

    Article  Google Scholar 

  • Jung, Y. C. and Bhushan, B. (2010), “Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows,” J. Phys.: Condens. Matter 22, 1–9.

    Google Scholar 

  • Kennedy, J. L. (1993), Oil and Gas Pipeline Fundamentals, PennWell Books, Tulsa, Oklahoma.

    Google Scholar 

  • Kesel, A. and Liedert, R. (2007), “Learning from Nature: Non-Toxic Biofouling Control by Shark Skin Effect,” Comp. Biochem. Physiol. A 146, S130.

    Article  Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A. and Runstadler, P. W. (1967), “The Structure of Turbulent Boundary Layers.” J. Fluid Mech. 30, 741–773.

    Article  Google Scholar 

  • Koch, K. and Barthlott, W. (2009), “Superhydrophobic and Superhydrophilic Plant Surfaces: an Inspiration for Biomimetic Materials,” Phil. Trans. R. Soc. 367, 1487–1509.

    Article  CAS  Google Scholar 

  • Koury, E. and Virk P. S. (1995), “Drag Reduction by Polymer Solutions in a Riblet-Lined Pipe,” Appl. Sci. Res. 54, 323–347.

    Article  Google Scholar 

  • Krieger, K. (2004), “Do Pool Sharks Really Swim Faster?” Science 305, 636–637.

    Article  CAS  Google Scholar 

  • Lee, S. J. and Lee, S. H. (2001), “Flow Field Analysis of a Turbulent Boundary Layer over a Riblet Surface,” Exp. Fluids 30, 153–166.

    Article  Google Scholar 

  • Lee, J. D., Gregorek, G. M., and Korkan, K. D. (1978), “Testing Techniques and Interference Evaluation in the OSU Transonic Airfoil Facility,” Paper # AIAA-1978-1118, presented at 11th Fluid and Plasma Dynamics Conference, Seattle, WA, AIAA, New York.

    Google Scholar 

  • Liu, K. N., Christodoulou, C., Riccius, O. and Joesph, D. D. (1990), “Drag Reduction in Pipes Lined with Riblets,” AIAA 28, 1697–1698.

    Google Scholar 

  • Lowrey, P. and Harasha, J. (1991), “A Preliminary Assessment of the Feasibility of using Riblets in Internal Flows to Conserve Energy,” Energy 16, 631–642.

    Article  Google Scholar 

  • Luchini, P., Manzo, F., and Pozzi, A. (1991), “Resistance of a Grooved Surface to Parallel Flow and Cross-flow,” J. Fluid Mech. 228, 87–109.

    Article  Google Scholar 

  • Marentic, F. J. and Morris, T. L. (1992), “Drag Reduction Article,” U. S. Patent no. 5,133,516, Jul. 28.

    Google Scholar 

  • Martell, M. B., Perot, J. B., and Rothstein, J. P. (2009), “Direct Numerical Simulations of Turbulent Flows over Drag-reducing Ultrahydrophobic Surfaces,” J. Fluid Mech. 620, 31–41.

    Article  Google Scholar 

  • Martell, M. B., Rothstein, J. P. and Perot, J. B. (2010), “An Analysis of Superhydrophobic Turbulent Drag Reduction Mechanisms using Direct Numerical Simulation,” Phys. Fluids 22, 065102.

    Article  Google Scholar 

  • Martin, S. and Bhushan, B. (2014), “Fluid Flow Analysis of a Shark-Inspired Microstructure,” J. Fluid Mech. 756, 5–29.

    Article  CAS  Google Scholar 

  • Martin, S. and Bhushan, B. (2016a), “Fluid Flow Analysis of Continuous and Segmented Riblet Structures,” RSC Adv. 6, 10962–10978.

    Article  CAS  Google Scholar 

  • Martin, S. and Bhushan, B. (2016b), “Modeling and Optimization of Shark-inspired Riblet Geometries for Low Drag Application,” J. Colloid Interface Sci. 474, 206–215.

    Article  CAS  Google Scholar 

  • Martínez-Palou, R., Mosqueira, M., Zapata-Rendón, B., Mar-Juárez, E., Bernal-Huicochea, C., Clavel-López, J. and Aburto, J. (2011), “Transportation of Heavy and Extra-heavy Crude Oil by Pipeline: A review,” J. Petrol. Sci. Eng, 75, 274–282.

    Article  Google Scholar 

  • Melo, L. F., Bott, T. R. and Bernardo, C. A. (eds.) (1988), Fouling Science and Technology, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Munson, B. R., Rothmayer, A. P., Okiishi, T. M., and Huebsch, W. D. (2012), Fundamentals of Fluid Mechanics, seventh ed., Wiley, New York.

    Google Scholar 

  • Neumann, D. and Dinkelacker, A. (1991), “Drag Measurements on V-grooved Surfaces on a Body of Revolution in Axial Flow,” App Sci Res 48, 105–114.

    Article  Google Scholar 

  • Nitschke, P. (1984), “Experimental Investigation of Turbulent Flow in Smooth and Longitudinal Grooved Pipes,” NASA STI/Recon Technical Report N88.

    Google Scholar 

  • Oeffner, J. and Lauder, G. V. (2012), “The Hydrodynamic Function of Shark Skin and Two Biomimetic Applications,” J. Exp. Biology 215, 785–795.

    Article  Google Scholar 

  • Ou, J., Perot, B. and Rothstein, J. P. (2004), “Laminar Drag Reduction in Microchannels using Ultrahydrophobic Surfaces,” Phys. Fluids 16, 4635–4643.

    Article  CAS  Google Scholar 

  • Pritchard, P. J. and Mitchell, J. W. (2015), Fox and McDonald’s Introduction to Fluid Mechanics, ninth ed., Wiley, New York.

    Google Scholar 

  • Railkin, A. I. (2004), Marine Biofouling Colonization Processes and Defenses, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Ralston, E. and Swain, G. (2009), “Bioinspiration – the Solution for Biofouling Control?” Bioinsp. Biomim. 4, 1–9.

    Article  Google Scholar 

  • Ray, D. L. (ed.) (1959), Marine Boring and Fouling Organisms, University of Washington Press, Seattle, WA.

    Google Scholar 

  • Reidy, L. W. and Anderson, G. W. (1988), “Drag Reduction for External and Internal Boundary Layers Using Riblets and Polymers,” Paper # AIAA-1988-0138, presented at 26th AIAA Aerospace Sciences Meeting, Reno, NV, AIAA, New York.

    Google Scholar 

  • Reif, W. (1985), Squamation and Ecology of Sharks, Vol. 78, pp. 1–255, Courier Forschungsinstitut Senckenberg, Frankfurt, Germany.

    Google Scholar 

  • Rohr, J. J., Andersen, G. W., Reidy, L. W. and Hendricks, E. W. (1992), “A Comparison of the Drag-reducing Benefits of Riblets in Internal and External Flows,” Exp. in Fluids, 13, 361–368.

    Article  CAS  Google Scholar 

  • Sareen, A., Deters, R. W., Henry, S. P. and Selig, M. S. (2011), “Drag Reduction Using Riblet Film Applied to Airfoils for Wind Turbines,” Paper # AIAA-2011-558, presented at 49th AIAA Aerospace Sciences Meeting, Orlando, FL, AIAA, New York.

    Google Scholar 

  • Scardino, A. J. (2009), “Surface Modification Approaches to Control Marine Biofouling,” in Advances in Marine Antifouling Coatings and Technologies (eds. C. Hellio and D. Yebra), pp. 664–692, CRC Press, Boca Raton, Florida.

    Chapter  Google Scholar 

  • Schulz, M. J., Shanov, V. N. and Yun, Y. (eds.) (2009), Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices, Artech House, Boston.

    Google Scholar 

  • Schumacher, J. F., Aldred, N., Callow, M. E., Finlay, J. A., Callow, J. A., Clare, A. S. and Brennan, A. B. (2007), “Species-Specific Engineered Antifouling Topographies: Correlations between the Settlement of Algal Zoospores and Barnacle Cyprids,” Biofouling 23, 307– 317.

    Article  Google Scholar 

  • Shephard, K. L. (1994), “Functions for Fish Mucus,” Rev. Fish Biology and Fisheries 4, 401–429.

    Article  Google Scholar 

  • Shirtliff, M. and Leid, J. G. (eds.) (2009), The Role of Biofilms in Device-Related Infections, Springer-Verlag, Berlin.

    Google Scholar 

  • Somerscales, E. F. C. and Knudsen, J. G. (eds.) (1981), Fouling of Heat Transfer Equipment, Hemisphere Publishing Corporation, Washington, D. C.

    Google Scholar 

  • Subaschandar, N., Kumar, R., and Sundaram, S. (1999), “Drag Reduction Due to Riblets on a GAW(2) Airfoil,” J. of Aircraft, 36, 890–892.

    Article  Google Scholar 

  • Sundaram, S., Viswanath, P. R., and Rudrakumar, S. (1996), “Viscous Drag Reduction Using Riblets on NACA 0012 Airfoil to Moderate Incidence,” AIAA 34, 676–682.

    Article  Google Scholar 

  • Sundaram, S., Viswanath, P. R., and Subaschandar, N. (1999), “Viscous Drag Reduction Using Riblets on a Swept Wing,” AIAA 37, 851–856.

    Article  Google Scholar 

  • Viswanath, P. R. (1999), “Riblets on Airfoil and Wings: A Review,” Paper # AIAA-99-3402, presented at the AIAA 30th Fluid Dynamics Conference, Norfolk, VA, AIAA, New York.

    Google Scholar 

  • Viswanath, P. R. and Mukund, R. (1995), “Turbulent Drag Reduction Using Riblets on a Supercritical Airfoil at Transonic Speeds,” AIAA 33, 945–947.

    Article  Google Scholar 

  • Viswanath, P. R. (2002), “Aircraft Viscous Drag Reduction using Riblets,” Prog Aerospace Sci, 38, 571–600.

    Article  Google Scholar 

  • Vo-Dinh, T. (ed.) (2007), Nanotechnology in Biology and Medicine, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Walker, J., Surman, S. and Jass, J. (eds.) (2000), Industrial Biofouling Detection, Prevention and Control, Wiley, New York.

    Google Scholar 

  • Walsh, M. J. (1982), “Turbulent Boundary Layer Drag Reduction using Riblets,” Paper # AIAA-1982-0169, presented at AIAA 20th Aerospace Sciences Meeting, Orlando FL, AIAA, New York.

    Google Scholar 

  • Walsh, M. J. (1990a), “Effect of Detailed Surface Geometry on Riblet Drag Reduction Performance,” J. Aircraft, 27, 572–573.

    Article  Google Scholar 

  • Walsh, M. J. (1990b), “Riblets. Viscous Drag Reduction in Boundary Layers,” Progr. in Astronaut. and Aeronaut., 123, 203–261.

    Google Scholar 

  • Walsh, M. J. and Lindemann, A. M. (1984), “Optimization and Application of Riblets for Turbulent Drag Reduction,” Paper # AIAA-1984-0347, presented at AIAA 22nd Aerospace Sciences Meeting, Reno, NV, AIAA, New York.

    Google Scholar 

  • Walsh, M. J. and Anders, J. B., Jr. (1989), “Riblet/LEBU Research at NASA Langley,” Appl. Sci. Res. 46, 255–262.

    Article  Google Scholar 

  • Weiss, M. H. (1997), “Implementation of Drag Reduction Techniques in Natural Gas Pipelines,” presented at 10th European Drag Reduction Working Meeting, Berlin, Germany, March 19–21.

    Google Scholar 

  • Wen, L., Weaver, J. C., and Lauder, G. V. (2014), “Biomimetic Shark Skin: Design, Fabrication, and Hydrodynamic Function,” J. Exp. Biology 217, 1656–1666.

    Article  Google Scholar 

  • Wetzel, K. K. and Farokhi, S. (1996), “Interaction of Riblets and Vortex Generators on an Airfoil,” Paper # AIAA-1996-2428-CP, presented at the AIAA 14th Applied Aero-dynamics Conference, New Orleans, LA, AIAA, New York.

    Google Scholar 

  • White, F. (2006), Viscous Fluid Flow, third ed., McGraw Hill, New York.

    Google Scholar 

  • Wilkinson, S. P. and Lazos, B. S. (1988), “Direct Drag and Hot-wire Measurements on Thin-element Riblet Arrays,” in Turbulence Management and Relaminarisation (eds. H. W. Liepmann and R. Narasimha), pp. 121–131, Springer-Verlag, Berlin, Germany.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2018). Shark Skin Surface for Fluid-Drag Reduction in Turbulent Flow. In: Biomimetics. Springer Series in Materials Science, vol 279. Springer, Cham. https://doi.org/10.1007/978-3-319-71676-3_13

Download citation

Publish with us

Policies and ethics