Biomimetics pp 429-490 | Cite as

Fabrication and Characterization of Mechanically Durable Superliquiphobic Surfaces

  • Bharat BhushanEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 279)


Superliquiphobic surfaces are of interest for liquid repellent, self-cleaning, anti-icing, anti-smudge, and antifouling applications. The surfaces should be mechanically durable for commercial applications.


  1. Anonymous (1994), ASTM standard 3-89, (1994), Metals Test Methods and Analytical Procedures, Annual Book of ASTM standards (v.03.02, Wear and erosion; metal corrosion), ASTM. Philadelphia.Google Scholar
  2. Anonymous (2005), ISO 17475:2005, Corrosion of Metals and Alloys-Electrochemical Test Methods-Guidelines for Conducting Potentiostatic and Potentiodynamic Polarization Measurements. American National Standards Institute.Google Scholar
  3. Arkles, B., Maddox, A., Singh, M., Zazyczny, J., Matisons, J. (2014), Silane Coupling Agents: Connecting Across Boundaries, third ed., Gelest Inc., Morrisville, PA.Google Scholar
  4. Barthwal, S., Kim, Y. S. and Lim, S.-H. (2013), “Mechanically Robust Superamphiphobic Aluminum Surface with Nanopore-Embedded Microtexture,” Langmuir 29, 11966–11974.CrossRefGoogle Scholar
  5. Beckford, S. and Zou, M. (2011), “Micro/nano Engineering on Stainless Steel Substrates to Produce Superhydrophobic Surfaces” Thin Solid Films 520, 1520–1524.CrossRefGoogle Scholar
  6. Bhushan, B. and Gupta, B. K. (1991), Handbook of Tribology: Materials, Coatings, and Surface Treatments, McGraw-Hill Book Company, New York.Google Scholar
  7. Bhushan, B. and Martin, S. (2018), “Substrate-independent Superliquiphobic coatings for Water, Oil, and Surfactant Repellency: An Overview,” J. Colloid Interface Sci. 526, 90–105.CrossRefGoogle Scholar
  8. Boinovich, L. B., Emelyanenko, A. M., Ivanov, V. K., and Pashinin, A. S. (2013), “Durable Icephobic Coating for Stainless Steel,” ACS Appl. Mater. Inter. 5, 2549–2554.CrossRefGoogle Scholar
  9. Brassard, J., Sarkar, D., Perron, J., Audibert-Hayet, A., and Melot, D. (2015), “Nano-Micro Structured Superhydrophobic Zinc Coating on Steel for Prevention of Corrosion and Ice Adhesion,” J. Colloid Interface Sci. 447, 240–247.CrossRefGoogle Scholar
  10. Brown, P. S. and Bhushan, B. (2016), “Designing Bioinspired Superoleophobic Surfaces,” APL Materials 4, 015703.CrossRefGoogle Scholar
  11. Brown, R., Russell, S., May, S., Regan, F., and Chapman, J. (2017), “Reproducible Superhydrophobic PVC Coatings; Investigating the Use of Plasticizers for Early Stage Biofouling Control,” Adv. Eng. Mater. 19, 1700053.CrossRefGoogle Scholar
  12. Chen, L., Guo, Z., and Liu, W. (2016), “Biomimetic Multi-Functional Superamphiphobic FOTS-TiO2 Particles beyond Lotus Leaf,” ACS Appl. Mater. Interf. 8, 27188–27198.CrossRefGoogle Scholar
  13. Cobb, H. M. (2010), The History of Stainless Steel, ASM International, Materials Park, OH.Google Scholar
  14. Cremaldi, J. and Bhushan, B. (2018), “Fabrication of Bioinspired, Self-Cleaning Superliquiphilic/phobic Stainless Steel Using Different Pathways,” J. Colloid Interface Sci. 518, 284–297.CrossRefGoogle Scholar
  15. Davis, J. R. (1993), ASM Special Handbook, Aluminum and Aluminum Alloys, ASM International, Materials Park, Ohio.Google Scholar
  16. Devaprakasam, D., Sampath, S., and Biswas, S. K. (2004), “Thermal Stability of Perfluoroalkyl Silane Self-Assembled on a Polycrystalline Aluminum Surface,” Langmuir 20, 1329–1334.CrossRefGoogle Scholar
  17. Drobny, J. G. (2007), Handbook of Thermoplastic Elastomers, William Andrew Publishing, Norwich, NY.CrossRefGoogle Scholar
  18. Ebert, D. and Bhushan, B. (2012), “Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles,” Langmuir 28, 11391–11399.CrossRefGoogle Scholar
  19. Frank, M. A., Boccaccini, A. R., and Virtanena, S. (2014), “A Facile and Scalable Method to Produce Superhydrophic Stainless Steel Surface,” Appl. Surf. Sci. 311, 753–757.Google Scholar
  20. Fu, X. and He, X. (2008), “Fabrication of Super-Hydrophobic Surfaces on Aluminum Alloy Substrates,” Appl. Surf. Sci. 255, 1776–1781.CrossRefGoogle Scholar
  21. Guo, Z., Zhou, F., Hao, J. and Liu, W. (2005), “Stable Biomimetic Super-Hydrophobic Engineering Materials,” J. Am. Chem. Soc. 127, 15670–15671.CrossRefGoogle Scholar
  22. Gurera, D. and Bhushan, B. (2018), “Fabrication of Bioinspired Superliquiphobic Synthetic Leather with Self-cleaning and Low Adhesion,” Colloids Surf. A 545, 130–137.CrossRefGoogle Scholar
  23. Harris, S., and Veldmeijer, A. J. (Eds.) (2014), Why Leather?: The Material and Cultural Dimensions of Leather, Sidestone Press, Leiden, Netherlands.Google Scholar
  24. Hatch, J. E. (1984), Aluminum-Properties and Physical Metallurgy, Am. Soc. Metals, Metals Park, Ohio.Google Scholar
  25. He, Z., Ma, M., Lan, X., Chen, F., Wang, K., Deng, H., Zhang, Q. and Fu, Q. (2011), “Fabrication of a Transparent Superamphiphobic Coating with Improved Stability,” Soft Matter 7, 6435–6443.CrossRefGoogle Scholar
  26. He, M., Zhou, X., Zeng, X., Cui, D., Zhang, Q., Chen, J., Li, H., Wang, J., Cao, Z. and Song, Y. (2012), “Hierarchically Structured Porous Aluminum Surfaces for High-Efficient Removal of Condensed Water,” Soft Matter 8, 6680–6683.CrossRefGoogle Scholar
  27. Her, E. K., Ko, T. J., Lee, K. R., Oh, K. H., and Moon, M.-W. (2012), “Bioinspired Steel Surfaces with Extreme Wettability Contrast,” Nanoscale 4, 2900–2905.CrossRefGoogle Scholar
  28. Huang, L., Song, J., Lu, Y., Chen, F., Liu, X., Jin, Z., Zhao, D., Carmalt, C. J., and Parkin, I. P. (2017), “Superoleophobic Surfaces on Stainless Steel Substrates Obtained by Chemical Bath Deposition,” Micro. Nano. Lett. 12, 76–81.Google Scholar
  29. Kaufman, J. G. and Rooy, E. L (Eds.). (2004), Aluminum Alloy Castings: Properties, Processes, and Applications. ASM International, Materials Park, Ohio.Google Scholar
  30. Ke, Q., Fu, W., Jin, H., Zhang, L., Tang, T., and Zhang, J. (2011), “Fabrication of Mechanically Robust Superhydrophobic Surfaces Based on Silica Micro-nanoparticles and Polydimethylsiloxane,” Surf. Coat. Technol. 205, 4910–4914.CrossRefGoogle Scholar
  31. Kim, C., and Hsieh, Y.-L. (2001), “Wetting and Absorbency of Nonionic Surfactant Solutions on Cotton Fabrics,” Colloids Surf. A 187188, 385–397.CrossRefGoogle Scholar
  32. Kim, Y., Lee, S., Cho, H., Park, B., Kim, D. and Hwang, W. (2012), “Robust Superhydrophilic/Hydrophobic Surface Based on Self-Aggregated Al2O3 Nanowires by Single-Step Anodization and Self-Assembly Method,” ACS Appl. Mater. Interfaces 4, 5074–5078.CrossRefGoogle Scholar
  33. Kite, M., and Thomson, R. (2006), Conservation of Leather and Related Materials, Butterworth-Heinemann, Oxford, UK.CrossRefGoogle Scholar
  34. Krauss, G. (2005), Steels: Processing, Structure, and Performance, ASM International, Materials Park, OH.Google Scholar
  35. Latthe, S. S., Sudhagar, P., Devadoss, A., Kumar, A. M., Liu, S., Terashima, C., Nakata, K. and Fujishima, A. (2015), “A Mechanically Bendable Superhydrophobic Steel Surface with Self-Cleaning and Corrosion-Resistant Properties,” J. Mater. Chem. A 3, 14263–14271.CrossRefGoogle Scholar
  36. Li, L., Breedveld, V., and Hess, D. W. (2012), “Creation of Superhydrophobic Stainless Steel Surfaces by Acid Treatments and Hydrophobic Film Deposition,” ACS Appl. Mater. Inter. 4, 4549–4556.CrossRefGoogle Scholar
  37. Li, L., Huang, T., Lei, J., He, J., Qu, L., Huang, P., Zhou, W., Li, N. and Pan, F. (2014a), “Robust Biomimetic-Structural Superhydrophobic Surface on Aluminum Alloy,” ACS Appl. Mater. Interfaces 7, 1449–1457.CrossRefGoogle Scholar
  38. Li Y., Wan Y., Dong Z., and Zhang J. (2014b), “Excellent Friction-reducing Performance of Superhydrophobic Steel Surface in Dry Sliding,“ RSC Adv. 4, 20548–20553.CrossRefGoogle Scholar
  39. Liu, L., Zhao, J., Zhang, Y., Zhao, F. and Zhang, Y. (2011), “Fabrication of Superhydrophobic Surface by Hierarchical Growth of Lotus-Leaf-Like Boehmite on Aluminum Foil,” J. Colloid Interface Sci. 358, 277–283.CrossRefGoogle Scholar
  40. Liu, L., Feng, X. and Guo, M. (2013a), “Eco-Friendly Fabrication of Superhydrophobic Bayerite Array on Al Foil Via an Etching and Growth Process,” J. Phys. Chem. C 117, 25519–25525.CrossRefGoogle Scholar
  41. Liu, Y., Liu, J., Li, S., Liu, J., Han, Z. and Ren, L. (2013b), “Biomimetic Superhydrophobic Surface of High Adhesion Fabricated with Micronano Binary Structure on Aluminum Alloy,” ACS Appl. Mater. Interfaces 5, 8907–8914.CrossRefGoogle Scholar
  42. Lu, S., Chen, Y., Xu, W. and Liu, W. (2010), “Controlled Growth of Superhydrophobic Films by Sol-Gel Method on Aluminum Substrate,” Appl. Surf. Sci. 256, 6072–6075.CrossRefGoogle Scholar
  43. Lu, Y., Sathasivam, S., Song, J., Chen, F., Xu, W., Carmalt, C. J., and Parkin, I. P. (2014), “Creating Superhydrophobic Mild Steel Surfaces for Water Proofing and Oil–Water Separation,” J. Mater. Chem. A 2, 11628–11634.CrossRefGoogle Scholar
  44. Ma, J., Zhang, X., Bao, Y., and Liu, J. (2015), “A Facile Spraying Method for Fabricating Superhydrophobic Leather Coating,” Colloids Surf. A 472, 21–25.CrossRefGoogle Scholar
  45. Maitra, T., Antonini, C., auf der Mauer, M., Stamatopoulos, C., Tiwari, M. K. and Poulikakos, D. (2014), “Hierarchically Nanotextured Surfaces Maintaining Superhydrophobicity under Severely Adverse Conditions,” Nanoscale 6, 8710–8719.CrossRefGoogle Scholar
  46. Manning, R., and Ewing, J. (2009), Temperature in Cars Survey, Brisbane, Australia.Google Scholar
  47. Materne, T., de Buyl, F., and Witucki, G. L. (2012), Organosilane Technology in Coating Applications: Review and Perspective, Dow Corning Corporation, Midland, MI.Google Scholar
  48. Meng, H., Wang, S., Xi, J., Tang, Z. and Jiang, L. (2008), “Facile Means of Preparing Superamphiphobic Surfaces on Common Engineering Metals,” J. Phys. Chem. C 112, 11454–11458.CrossRefGoogle Scholar
  49. Motlagh, N. V., Birjandi, F. C., Sargolzaei, J., and Shahtahmassebi, N. (2013), “Durable, Superhydrophobic, Superoleophobic and Corrosion Resistant Coating on the Stainless Steel Surface Using a Scalable Method,” Appl. Surf. Sci. 283, 636–647.Google Scholar
  50. Nanda, D., Varshney, P., Satapathy, M., Mohapatra, S. S., Bhushan, B., and Kumar, A. (2017), “Single Step Method to Fabricate Durable Superliquiphobic Coating on Aluminum Surface with Self-cleaning and Anti-fogging Properties” J. Colloid Interface Sci. 507, 397–409.CrossRefGoogle Scholar
  51. Nosonovsky, M. and Bhushan, B. (2008), Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics, Springer, Heidelberg, Germany.CrossRefGoogle Scholar
  52. Peng, S. and Bhushan, B. (2016), “Mechanically Durable Superoleophobic Aluminum Surfaces with Microstep and Nanoreticula Hierarchical Structure for Self-Cleaning and Anti-smudge Properties,” J. Colloid Interface Sci. 461, 273–284.CrossRefGoogle Scholar
  53. Peng, S., Yang, X., Tian, D. and Deng, W. (2014), “Chemically Stable and Mechanically Durable Superamphiphobic Aluminum Surface with a Micro/Nanoscale Binary Structure,” ACS Appl. Mater. Interfaces 6, 15188–15197.CrossRefGoogle Scholar
  54. Poetes, R., Holtzmann, K., Franze, K. and Steiner, U. (2010) “Metastable Underwater Superhydrophobicity,” Phys. Rev. Lett. 105 166104, 1–4.Google Scholar
  55. Qian, B. and Shen, Z. (2005), “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates,” Langmuir 21, 9007–9009.CrossRefGoogle Scholar
  56. Qu, M., Zhang, B., Song, S., Chen, L., Zhang, J. and Cao, X. (2007), “Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process,” Adv. Funct. Mater. 17, 593–596.CrossRefGoogle Scholar
  57. Ren, S.,Yang, S. and Zhao, Y. (2004), “Nano-Tribological Study on a Super-Hydrophobic Film Formed on Rough Aluminium Substrates,” Acta Mech. Sin. 20, 159–164.Google Scholar
  58. Song, J., Xu, W. and Lu, Y. (2012), “One-Step Electrochemical Machining of Superhydrophobic Surfaces on Aluminum Substrates,” J. Mater. Sci. 47, 162–168.CrossRefGoogle Scholar
  59. Tsujii, K., Yamamoto, T., Onda, T. and Shibuichi, S. (1997), “Super Oil-Repellent Surfaces,” Angew. Chem. Int. Ed. Engl. 36, 1011–1012.CrossRefGoogle Scholar
  60. Vander Voort, G. F. (1984), Metallography: Principles and Practice, McGraw-Hill, New York.Google Scholar
  61. Walker, P. and Tarn, W. H. (Eds.) (1991), CRC Handbook of Metal Etchants, CRC Press, Boca Raton, FL.Google Scholar
  62. Wang, Y., and Bhushan, B. (2015), “Wear-Resistant and Antismudge Superoleophobic Coating on Polyethylene Terephthalate Substrate Using SiO2 Nanoparticles,” ACS Appl. Mater. Interfaces 7, 743–755.CrossRefGoogle Scholar
  63. Wu, W., Wang, X., Wang, D., Chen, M., Zhou, F., Liu, W. and Xue, Q. (2009a), “Alumina Nanowire Forests Via Unconventional Anodization and Super-Repellency Plus Low Adhesion to Diverse Liquids,” Chem. Commun. 9, 1043–1045.Google Scholar
  64. Wu, B., Zhoua, M., Lia, J., Yea, X., Lia, G., and Cai, L. (2009b), “Superhydrophobic Surfaces Fabricated by Microstructuring of Stainless Steel using a Femtosecond Laser,” Appl. Surf. Sci. 256, 61–66.CrossRefGoogle Scholar
  65. Xu, W., Liu, H., Lu, S., Xi, J., and Wang, Y. (2008), “Fabrication of Superhydrophobic Surfaces with Hierarchical Structure through a Solution-Immersion Process on Copper and Galvanized Iron Substrates,” Langmuir 24, 10895–10900.CrossRefGoogle Scholar
  66. Zhang, F., Zhao, L., Chen, H., Xu, S., Evans, D. G. and Duan, X. (2008), “Corrosion Resistance of Superhydrophobic Layered Double Hydroxide Films on Aluminum,” Angew. Chem. Int. Ed. 47, 2466–2469.CrossRefGoogle Scholar
  67. Zimmerman, J., Reifler, F. A., Fortunato, G., Gerhardt, L.-C. and Seeger, S. (2008) “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles,” Adv. Funct. Mater. 18, 3662–3669.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Nanoprobe Laboratory for Bio/Nanotechnology and Biomimetics (NLBB)The Ohio State UniversityColumbusUSA

Personalised recommendations