Variational Symplectic Structures

  • Joseph Krasil’shchik
  • Alexander Verbovetsky
  • Raffaele Vitolo
Chapter
Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

A variational symplectic structure on an equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator \(\mathcal {S}\colon \varkappa = \mathcal {F}(\mathcal {E};m)\to \hat {P} = \mathcal {F}(\mathcal {E};r)\) that takes symmetries of \(\mathcal {E}\) to cosymmetries and enjoys additional integrability properties. We expose here the computational theory of local symplectic structures and consider some instructive examples of nonlocal ones. In this chapter we give the solution to Problems  1.22,  1.23, and  1.28.

References

  1. 9.
    Baran, H., Krasilshchik, I.S., Morozov, O.I., Vojčák, P.: Higher symmetries of cotangent coverings for Lax-integrable multi-dimensional partial differential equations and lagrangian deformations. In: Konopelchenko, B.G., et al. (eds.) Physics and Mathematics of Nonlinear Phenomena 2013. Journal of Physics: Conference Series, vol. 482, p. 012002 (2014). arXiv:1309.7435Google Scholar
  2. 25.
    Doubrov, B., Ferapontov, E.V.: On the integrability of symplectic Monge–Ampère equations. J. Geom. Phys. 60, 1604–1616 (2010). arXiv:0910.3407Google Scholar
  3. 62.
    Kersten, P., Krasilshchik, I., Verbovetsky, A., Vitolo, R.: On integrable structures for a generalized Monge–Ampère equation. Theor. Math. Phys. 128(2), 600–615 (2012)Google Scholar
  4. 105.
    Neyzi, F., Nutku, Y., Sheftel, M.B.: Multi-hamiltonian structure of Plebanski’s second heavenly equation. J. Phys. A 38, 8473 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 111.
    Ovsienko, V.: Bi-Hamiltonian nature of the equation utx = uxy uy − uyy ux. Adv. Pure Appl. Math. 1, 7–17 (2010)Google Scholar
  6. 137.
    Sheftel, M.B., Yazıcı, D., Malykh, A.A.: Recursion operators and bi-Hamiltonian structure of the general heavenly equation. J. Geom. Phys. 116, 124–139 (2017). arXiv:1510.03666Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Joseph Krasil’shchik
    • 1
  • Alexander Verbovetsky
    • 2
  • Raffaele Vitolo
    • 3
  1. 1.V.A. Trapeznikov Institute of Control Sciences RASIndependent University of MoscowMoscowRussia
  2. 2.Independent University of MoscowMoscowRussia
  3. 3.Department of Mathematics and Physics ‘E. De Giorgi’University of SalentoLecceItaly

Personalised recommendations