Skip to main content

Abstract

We discuss here the notion of conservation laws and briefly the theory of Abelian coverings over infinitely prolonged equations. Computation of conservation laws is also closely related to that of cosymmetries , and we shall continue this discussion in Chap. 4 below. In this chapter we give the solution to Problems 1.7, 1.13, and 1.15 posed in Chap. 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [118, 119], one can find dimension estimates for the spaces of conservation laws of even-order evolution equations.

  2. 2.

    We denote q 1 by z below.

  3. 3.

    This procedure is usually called “splitting.”

References

  1. Baran, H., Krasilshchik, I.S., Morozov, O.I., Vojčák, P.: Nonlocal symmetries of Lax integrable equations: a comparative study. Submitted to Theor. Math. Phys. (2016). arXiv:1611.04938

    Google Scholar 

  2. Ferapontov, E.V.: Surfaces in 3-space possessing nontrivial deformations which preserve the shape operator. In: Integrable Systems in Differential Geometry, Tokyo, July 2000, Contemporary Mathematics, vol. 508, pp. 145–159. AMS, Providence (2002). arXiv:math/0107122

    Google Scholar 

  3. Gibbons, J., Tsarev, S.P.: Reductions of the Benney equations. Phys. Lett. A 211, 19–24 (1996)

    Google Scholar 

  4. Göktas, Ü., Hereman, W.: Symbolic computation of conserved densities for systems of nonlinear evolution equations. J. Symb. Comput. 24(5), 591–621 (1997)

    Google Scholar 

  5. Golovko, V.A., Kersten, P.H.M., Krasilshchik, I.S., Verbovetsky, A.M.: On integrability of the Camassa-Holm equation and its invariants. Acta Appl. Math. 101, 59–83 (2008)

    Google Scholar 

  6. Hereman, W., Adams, P.J., Eklund, H.L., Hickman, M.S., Herbst, B.M.: Direct methods and symbolic software for conservation laws of nonlinear equations. In: Yan, Z. (ed.) Advances in Nonlinear Waves and Symbolic Computation, chap. 2, pp. 19–79. Nova Science Publishers, New York (2009)

    Google Scholar 

  7. Kersten, P.: Supersymmetries and recursion operator for N = 2 supersymmetric KdV-equation. Sūrikaisekikenkyūsho Kōkyūroku 1150, 153–161 (2000)

    Google Scholar 

  8. Kersten, P., Krasilshchik, I., Verbovetsky, A.: (Non)local Hamiltonian and symplectic structures, recursions and hierarchies: a new approach and applications to the N = 1 supersymmetric KdV equation. J. Phys. A 37, 5003–5019 (2004)

    Google Scholar 

  9. Kersten, P., Krasilshchik, I., Verbovetsky, A.: A geometric study of the dispersionless Boussinesq type equation. Acta Appl. Math. 90, 143–178 (2006)

    Google Scholar 

  10. Kersten, P., Krasilshchik, J.: Complete integrability of the coupled KdV-mKdV system. In: Morimoto, T., Sato, H., Yamaguchi, K. (eds.) Lie Groups, Geometric Structures and Differential Equations—One Hundred Years After Sophus Lie. Advanced Studies in Pure Mathematics, vol. 37, pp. 151–171. Mathematical Society of Japan, Tokyo (2002)

    Google Scholar 

  11. Krasilshchik, I.: A natural geometric construction underlying a class of Lax pairs. Lobachevskii J. Math. 37(1), 60–65 (2016). arXiv:1401.0612

    Google Scholar 

  12. Krasilshchik, I.S., Kersten, P.H.M.: Deformations and recursion operators for evolution equations. In: Prastaro, A., Rassias, T.M. (eds.) Geometry in Partial Differential Equations, pp. 114–154. World Scientific, Singapore (1994)

    Google Scholar 

  13. Krasilshchik, I.S., Kersten, P.H.M.: Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations. Kluwer, Dordrecht/Boston (2000)

    Google Scholar 

  14. Krasilshchik, I.S., Morozov, O.I., Sergyeyev, A.: Infinitely many nonlocal conservation laws for the ABC equation with A + B + C ≠ 0. Calc. Var. Partial Differ. Equ. 55(5), 1–12 (2016). arXiv:1511.09430

    Google Scholar 

  15. Krasilshchik, I.S., Sergyeyev, A.: Integrability of S-deformable surfaces: conservation laws, Hamiltonian structures and more. J. Geom. Phys. 97, 266–278 (2015). arXiv:1501.07171

    Google Scholar 

  16. Morozov, O.I., Sergyeyev, A.: The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries. J. Geom. Phys. 85(11), 40–45 (2014)

    Google Scholar 

  17. Pavlov, M.V., Chang, J.H., Chen, Y.T.: Integrability of the Manakov–Santini hierarchy. arXiv:0910.2400

    Google Scholar 

  18. Poole, D., Hereman, W.: Symbolic computation of conservation laws for nonlinear partial differential equations in multiple space dimensions. J. Symb. Comput 46(12), 1355–1377 (2011)

    Google Scholar 

  19. Popovych, R.O., Samoilenko, A.M.: Local conservation laws of second-order evolution equations. J. Phys. A 41, 362002 (2008). arXiv:0806.2765

    Google Scholar 

  20. Popovych, R.O., Sergyeyev, A.: Conservation laws and normal forms of evolution equations. Phys. Lett. A 374, 2210–2217 (2010). arXiv:1003.1648

    Google Scholar 

  21. Sergyeyev, A.: New integrable (3 + 1)-dimensional systems and contact geometry. Lett. Math. Phys. (2017). https://doi.org/10.1007/s11005-017-1013-4

  22. Wolf, T.: An efficiency improved program LIEPDE for determining Lie-symmetries of PDEs. In: Proceedings of Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics. Kluwer (1993)

    Google Scholar 

  23. Wolf, T.: A comparison of four approaches to the calculation of conservation laws. Eur. J. Appl. Math. 13(2), 129–152 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wolf, T., Brand, A.: CRACK, user guide, examples and documentation. http://lie.math.brocku.ca/Crack_demo.html

  25. Wolf, T., Brand, A.: Investigating des with crack and related programs. SIGSAM Bull. Spec. Issue 1–8 (1995)

    Google Scholar 

  26. Zabolotskaya, E.A., Khokhlov, R.V.: Quasi-plane waves in the nonlinear acoustics of confined beams. Sov. Phys. Acoust. 15, 35–40 (1969)

    Google Scholar 

  27. Zakharevich, I.: Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs. arXiv:math-ph/0006001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasil’shchik, J., Verbovetsky, A., Vitolo, R. (2017). Conservation Laws and Nonlocal Variables. In: The Symbolic Computation of Integrability Structures for Partial Differential Equations. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-71655-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71655-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71654-1

  • Online ISBN: 978-3-319-71655-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics